Или любую другую модель, наверное, уже слышал о том, что на рынке высокотехнологичных устройств есть и такие приборы как 3D сканеры. Для тех, кто не знает что это за аппараты, наша статья.

Определение 3D сканера

3D сканеры представляют устройства, предназначенные для сканирования физических объектов и их точного последующего воспроизведения. Простыми словами, трехмерный сканер делает с объектом то же самое, что 2D сканер, который сканирует изображение на листе бумаги и переносит его на компьютер. Только в случае с 3D принтерами сканируется реальный объект, а на монитор передается объемная модель. Современные модели пространственных сканеров могут иметь вид небольших портативных устройств или серьезных стационарных аппаратов, которые имеют специальные лампы или лазеры для осуществления подсветки. Разброс качества передачи изображения в них может существенно отличаться. Это то же самое, если сравнивать возможности построения моделей двух печатающих трехмерных аппаратов - 3D принтера makerbot replicator и маленького дешевого бытового принтера.

При сканировании точность передачи изображения двух приборов может отличаться на порядок и изменяться от 10 до 100 микрон, эта величина зависит от типа прибора и его возможностей. Кроме этого, сканеры могут передавать изображение с полной цветовой гаммой или переносить только формы поверхности. Кроме различия в качестве получаемого изображения и в функционале, сканеры можно разделить на контактные и бесконтактные, то есть те, которые контактируют непосредственно с объектом или сканируют его на некотором, иногда до нескольких километров, расстоянии.

Преимущества

Если анализировать общие преимущества всех сканеров, то необходимо отметить:

  • Максимальную точность сканирования объектов. Воспроизводятся даже самые мелкие его детали.
  • Скорость сканирования максимальная- от нескольких секунд до нескольких минут.
  • Сканер можно размещать в разных пространственных положениях. Это особенно важно для получения объемных моделей больших предметов (домов, памятников и т.д.).

Если анализировать преимущества контактных и бесконтактных моделей, то первые:

  • Качественно сканируют вне зависимости от освещения.
  • Максимально точны в работе.
  • Просты в управлении.

Бесконтактные приборы могут снимать на больших расстояниях, не контактируя с предметом, и более энергоэкономичные в использовании.

Из недостатков всех сканеров отметим невозможность качественного сканирования движущихся объектов, а также плохое качество изображения объектов, имеющих блестящую или прозрачную поверхность.

Область применения

Возможности сканеров запечатлеть с максимальной точностью форму практически любого объекта, обеспечили им применение в разных сферах жизни человека. Они используются в медицине для сканирования мозга, опорно-двигательного аппарата, сердца, а также для поиска опухолей. В производстве 3D сканирование незаменимо в реверс-инжениринге, а в строительстве для контроля качества, реконструкции автотрасс и в определении пустот под землей.

Что такое 3D сканер?

3D сканер – это устройство, которое анализирует физический объект и, отталкиваясь от полученной информации, создает его 3D образ. Отсканированные модели далее могут обрабатываться средствами САПР, после чего используются для технологических и инженерных разработок. Для создания 3D-модели используются 3D-принтер и 3D-монитор.

В создании 3D-сканера участвовали сразу несколько технологий, различных между собой. Объекты, подвергающиеся оцифровке, также имеют некоторые ограничения. Трудности могут возникнуть с зеркальными, блестящими или прозрачными поверхностями. Стоит напомнить, что трехмерные данные важны и в других сферах деятельности. Например, его используют в развлекательной индустрии: при создании видеоигр, фильмов, рисунков. 3D-технологии находят свое применение в ортопедической области и протезировании, при разработке промышленного дизайна, реверс-инжиниринге, создании прототипов, а также в осмотре и документальной отчетности исторических объектов или иных культурных артефактов.

Область функциональных возможностей 3D-сканера

Во время работы 3D-сканер создает множество точек согласно геометрическим пропорциям сканируемого объекта. В дальнейшем эти точки воссоздают форму предмета, то есть реконструируют его на монитор. Если имеются сведения о расцветках, то они определяют и цвет будущей цифровой поверхности.

3D-сканер можно сравнить с обычной камерой: поле зрения у них конусообразного типа, а информация может быть получена только с тех поверхностей, которые были не затемнены. Различия между этими приборами все же существенные. Камера передает только изображение и цвет предмета, а сканер, более тщательно исследуя объект, выдает «картинку» с точным расстоянием каждой точки до поверхности. Это позволяет видеть изображение сразу в трех плоскостях.

Для полноценного моделирования предмета одного сканирования, как правило, недостаточно. Требуется сразу несколько таких операций. Сканирование объекта с разных направлений необходимо для получения более полной информации о его сторонах. Все отсканированные данные накладываются на общую систему координат, где происходит «привязка» и выравнивание изображения. Вся процедура моделирования называется 3D конвейером.

Для четкого сканирования объекта и сканирования его форм существует несколько технологий. По классификации 3D-сканеры делятся на два типа: контактные сканеры и бесконтактные. Последние, в свою очередь, делятся еще на два вида – пассивные и активные.

Контактные 3D-сканеры

Сканеры этого вида изучают объект напрямую – через физическое взаимодействие. В момент исследования предмет находится на специальной поверочной плите, отполированной и отшлифованной до нужной шероховатости поверхности. Если вещь несимметричная или не может лежать ровно на одном месте, ее удерживают специальные зажимы (тиски).

Различают три формы механизма 3D-сканера:

  1. Каретка, оснащенная измерительной рукой, которая четко зафиксирована в перпендикулярном направлении. Исследование по всем осям происходит в тот момент, когда рука двигается вдоль каретки. Этот вариант идеально подходит для изучения плоских или обычных выпуклых поверхностей.
  2. Прибор, оснащенный высокоточным угловым датчиком и зафиксированными составляющими. Конец измерительной руки расположен так, что способен воспроизводить сложнейшие математические вычисления. Данный механизм оптимален для сканирования внутреннего пространства объекта или иных его углублений, имеющих небольшое входное отверстие.
  3. Единовременное использование двух вышеуказанных механизма. К примеру, манипулятор совмещают с кареткой, что позволяет собирать информацию с крупных объектов, имеющих несколько внутренних отсеков или, перекрывающих друг друга, плоскости.

Координатно-измерительная машина – яркий пример 3D-сканера контактного типа. Они являются сверхточными и широко применяются на различных производствах. К существенному минусу машины можно отнести необходимость обязательного соприкосновения с изучаемым объектом. Велика вероятность повреждения предмета или его деформации. Этот пункт очень важен, тем более, если происходит сканирование хрупкого или исторического объекта.

Еще один недостаток КИМ – это ее медлительность. Перемещение руки по установленной цели может происходить очень долго. В то время, как современные оптические модели, могут работать гораздо быстрее.

К этой группе можно также отнести ручные измерительные приборы, которые часто используются для 3D-моделирования анимационных фильмов.

Бесконтактные активные 3D-сканеры

Для работы активного сканера используются либо обычный свет, либо определенный вид излучения. Именно через проходящее излучение или отражение света, объект подвергается цифровому исследованию. Случается применение рентгеновских лучей или ультразвука.

Триангуляционные сканеры

Эти приборы используют для зондирования объекта лазерный луч. Сканер посылает луч на предмет, а отдельно зафиксированная камера заносит данные о расположении указанной точки. По мере движения лазера по поверхности, поле зрения камеры фиксирует точку в разных местах. Триангуляционными их назвали потому, что лазерный излучатель, конечная точка и сама камера, совместно образуют треугольник.

Времяпролетные 3D-сканеры

Это активный вид сканера, который для исследования объекта использует лазерный луч. В его основе лежит времяпролетный дальномер. Именно он определяет расстояние до поверхности, рассчитывая время, за которое лазер пролетел туда и обратно. В этом случае лазерный луч используется, как световой импульс, время отражения которого и измеряется при помощи детектора. Скорость света, как известно, величина постоянная, поэтому, зная, за какое время луч совершает пролет туда-обратно, можно без труда вычислить расстояние от сканера до поверхности изучаемого предмета.

Времяпролетные 3D-приборы сканирования за одну секунду способны измерить до 100 000 точек.

Применение 3D-сканеров

Технологию 3D-сканирования простой не назовешь. Но, несмотря на это, этот с каждым годом она все активней развивается. Причин для этого масса, но можно выделить самые весомые.

В первую очередь, такое оборудование необходимо всем промышленным предприятиям для более дешевых и быстрых разработок продукции.

Реалистичными копиями реально существующих предметов пользуются сейчас во многих сферах деятельности: медицине, кино, фэйшн-индустрии.

Производство 3D-сканеров давно перестало быть чем-то из ряда фантастики. Сейчас их производят тысячи компаний: как акулы индустрии, так и дебютанты данного рынка. Поколение 3D-сканеров способно положительным образом повлиять на индустрии в целом. тем боле, что свою нишу здесь найдут, как крупные производства, так и инженеры одиночки.

3D-сканер – это устройство, с помощью которого можно создавать точные трехмерные модели реальных объектов.

Преимущества этой технологии:

  • высокая степень детализации;
  • информация о поверхности, форме и цвете объекта в цифровом виде.

Он преобразует объект в его цифровое изображение подобно тому, как простой 2D сканер преобразует изображение на листе бумаги в изображение на компьютере.

Применение 3D-сканеров

3D-сканеры используются во многих областях промышленности, науки, медицины и искусства. В частности, они успешно решают задачи реверс-инженеринга, контроля формы объектов, сохранения культурного наследия, используются в музейном деле, в медицине и дизайне. Таким образом, они необходимы во всех случаях, когда требуется зарегистрировать форму объекта с высокой точностью и за короткое время. Трехмерные сканеры позволяют упростить и улучшить ручной труд, а порой даже выполнить задачи, которые казались невозможными.

Эти устройства полезны в промышленности для бесконтактного контроля поверхностей сложной геометрической формы, а также для проектирования систем. Они используются:

  • для оценки износов оснастки и создания упаковки, точно повторяющей форму изделия;
  • в медицине с помощью 3D-сканеров ставят диагнозы, планируют операции и даже делают анатомическую обувь;
  • в ортодонтии, где необходимо точное, качественное сканирование объектов небольшого размера.;
  • дизайнеры используют 3D-сканеры для получения формы объекта, и её доработки;
  • в музейном деле и археологии они применяются для детального сканирования, точного восстановления и реконструкции скульптур и памятников архитектуры;
  • сканирование людей (получение цветной 3D-модели человека) уже сегодня используется для киноиндустрии и анимации.

Возможности 3D-сканеров

Как правило, 3D-сканер представляет собой небольшое электронное устройство, ручное (весом до 2 кг) или стационарное, которое использует в качестве подсветки лазер или лампу вспышку.

Точность получаемых моделей объектов варьируется от десятков до сотен микрометров. Возможно сканирование с передачей цвета или только формы поверхности. Эти устройства не только упрощают процесс создания трехмерных моделей – они печатают с максимальной точностью по отношению к исходному оригиналу.

Цена 3D сканеров зависит от технологии, применяемой для сканирования. Сегодня это доступный инструмент, которым пользуются даже небольшие компании.

Классификация 3D-сканеров

3D-сканеры делятся на два типа по методу сканирования:

  • Контактные. При таком сканировании происходит непосредственный контакт сканера с исследуемым объектом;
  • Бесконтактные.

Бесконтактные устройства в свою очередь подразделяются на две отдельные категории:

  • Пассивные сканеры;
  • Активные сканеры.

Пассивные сканеры сами ничего не излучают на объект, а видят отраженное фоновое излучение. Большинство сканеров такого типа реагируют на видимый свет - окружающее излучение.

Активные сканеры излучают на объект направленные волны и используют их отражение для анализа. Излучения бывают разными:

  • Естественного света;
  • Лазерных лучей;
  • Инфракрасного излучения;
  • Рентгеновских лучей;
  • Ультразвука.

Технологии сканирования

Для создания 3D-сканеров используются различные технологии. У каждой из них есть свои ограничения, преимущества и недостатки. Сегодня основными направлениями являются оптическая и лазерная технологии.

Сканирование по оптической технологии осуществляется путем проецирования на объект линий, образующих уникальный узор. Информация о форме поверхности объекта содержится в искажениях формы проецируемого изображения.

В сканировании по лазерной технологии используется лазер, безопасный для зрения. Чтобы привязать 3D-сканер с лазерной подсветкой к объекту сканирования, нередко применяются специальные светоотражающие маркеры, закрепленные рядом с объектом сканирования или прямо на нем, в определённых точках.

Ограничения в сканируемых объектах присутствуют в обоих этих технологиях.

Лазерные сканеры по большей части не применимы для сканирования подвижных объектов, так как этот процесс отнимает слишком много времени. К тому же необходимо нанести специальные светоотражающие метки. Преимущество данной технологии – в высокой точности 3D-модели, но она предназначена для статичных объектов.

Оптические 3D-сканеры не очень хороши при сканировании блестящих, зеркальных или прозрачных поверхностях. Зато у них большая скорость сканирования, что устраняет проблему искажения получаемой модели при движении объекта, и не нужно наносить отражающие метки. Поэтому оптические сканеры можно использовать даже для сканирования человеческих лиц.

Используются два понятия 3d модели: поверхностная модель и твердотельная модель . Они обладают разными свойствами и соответственно разными возможностями использования.

Поверхностную модель можно распечатать на 3d принтере, разместить на сайте, использовать для визуализации объекта. Изменить форму такой 3d модели нельзя. Если необходимо получить размеры, сделать чертеж, доработать модель, полноценно использовать ее в CAD-программе, stl-модель нужно перевести в твердотельную. Для этого необходимо произвести ряд действий.

1. Сканирование

Сканер подсвечивает изделие лазером или структурированным подсветом и получает информацию о расстоянии до поверхностей объекта. На основе этой информации строится участок поверхностной модели, который представляет собой облако миллионов точек. После получения достаточного количества таких участков программа, которая поставляется вместе со сканером, сшивает их в один объект в автоматическом или ручном режиме.

2. Обработка поверхностной модели

Поверхностная модель (полигональная модель, stl-модель, облако точек, облако треугольников) - это набор точек, соединенных в треугольники, которые образуют множество поверхностей, обозначающих границы объекта. Поверхностная модель может быть представлена как в виде облака точек, так и в виде набора треугольников, эти два вида легко трансформируются друг в друга.

Самый распространенный формат файла полигональной модели - stl, но могут быть и другие.

Модель из облака точек, полученных со сканера, как правило некачественная. Даже при идеальной для сканирования поверхности (объемная, белая, матовая, без труднодоступных мест и острых краев) 3д сканер все равно улавливает различные шумы - это могут быть как особенности самого объекта - грязь, сварные швы, метки и пр., так и внешние условия и характеристики самого сканера- освещение, температура, колебания опоры сканера. В итоге образуются лишние неровности, туннели, дыры и другие артефакты.

Некоторые операции обработки можно произвести в собственном софте сканера, но, как правило, это очень ограниченный набор функций. Для более качественной обработки используются сторонние программные комплексы, например Geomagic.

В процессе обработки над моделью может быть произведен ряд операций:

  • зашиваются дыры,
  • выравниваются поверхности,
  • удаляется шум,
  • модель правильно ориентируется;
  • уменьшается количество треугольников.

Полученную поверхность объекта можно просматривать в разных режимах: как облако точек или как сетку. Во втором случае все точки соединяются в треугольники, образуя миллион микро-поверхностей.

Эта сетка по сути и является полноценной полигональной моделью. Ее можно сохранить в формат stl или другие форматы (txt, csv, odt, xls).

Такую модель можно напечатать на 3d принтере, но сверх того возможности ее использования ограничены.

Важно! Несмотря на то, что на данном этапе мы получили stl-модель, она пока еще не пригодна для использования на многокоординатных станках с ЧПУ, так как содержит слишком большое количество поверхностей. Для станка с ЧПУ требуется дополнительная обработка базовой сканированной stl-модели: выравнивание, усреднение, уменьшение количества поверхностей.

По той же причине такую модель не получится загрузить в CAD-систему. SolidWorks, например, выдаст предупреждение о том, что модель содержит слишком большое количество поверхностей.

3. Построение твердотельной модели

На данном этапе на основе полигональной модели происходит построение нормального твердого тела также в специализированном софте, например Geomagic Design.

Используемые операции: вытягивание эскизов, деление на области, поиск вытянутых областей, построение замкнутого эскиза.

При правильной обработке модели на выходе мы получаем модель с деревом построений, пригодную для дальнейшей обработки в CAD-системе.

4. Контроль правильности построения модели

На данном этапе полученная твердотельная модель сравнивается со сканированной. Специальный инструмент программы позволяет в цветном виде увидеть отклонения, вызванные ошибками построения модели. Придется вернуться на несколько шагов назад и исправить некоторые операции.

5. Экспорт в CAD-систему

Этот, казалось бы, автоматический этап также может выявить ряд ошибок на этапе обработки модели. Например программа Geomagic Design Х с помощью своего API строит в открытом заранее SolidWorks модель на лету согласно собственному дереву построений. В конце может появится ошибка - в ней будет описано, на каком этапе построения модели возникла ошибка - идем обратно в Design X и редактируем в дереве этот элемент.

Общий процесс обработки получается довольно сложным, что и определяет более высокую стоимость 3d сканирования, по сравнению с ручным образмериванием изделий. Надеемся, что развитие технологий 3d сканирования и обработки 3d моделей позволит в дальнейшем упростить или объединить эти процедуры.

В различных областях деятельности человека завоевывает свое место не только технологии 3D печати, но и такие интересные приборы, как 3D-сканеры. С помощью такого устройства можно выполнять сканирование различных физических предметов, получая их трехмерные цифровые модели, характеризующиеся высокой точностью. Полученные модели с электронными данными о форме конкретного предмета могут быть задействованы в строительной сфере, медицине и игровой индустрии. На то, что ранее требовалось часы или даже дни, в настоящий момент посредством 3D-сканера необходимы лишь считанные секунды.

Принцип работы и преимущества

3D-сканер исследует физический предмет и воссоздает его точную цифровую модель. Современные 3D-сканеры могут выглядеть как ручной прибор небольшого размера, либо быть стационарным устройством, использующим в качестве подсветки лазер или специальную лампу, чтобы увеличить точность измерений. Принцип работы определяется используемой технологией, однако в любом случае данное устройство имеет дело с определением расстояния до сканируемого предмета.

Сканер исследует расстояние до объекта, задействуя две встроенные камеры и подсветку. С помощью этих «глаз» прибор измеряет расстояние до объекта в разных точках, а затем сопоставляет полученные от камер картинки. Все измеренияз аписываются, после чего проводится анализ и на экран уже выводится готовая цифровая модель. Сканирование может осуществляться и лазерным лучом, который перемещается над поверхностью предмета и измеряет расстояние в конкретной точке. Таким способом записываются координаты всех измеряемых точек, что открывает возможность для создания трехмерной компьютерной модели.

Пользователь может оперировать самим процессом сканирования, устанавливая разрешение и соответствующие области, где требуется более высокая детализация. Современные 3D-сканеры уже научились обеспечивать точность получаемых трехмерных моделей вплоть до нескольких десятков или даже сотен микрометров. Причем имеется возможность сканировать объект с передачей не только его формы, но и цвета. В результате, существенно упрощается процесс создания трехмерных макетов – они создаются не только в короткие сроки, но и с очень высокой детализацией. Кроме того, полученное трехмерное изображение всегда можно открыть в редакторе и осуществить дополнительное редактирование по своему усмотрению.

Разные модели сканеров характеризуются различными параметрами и возможностями, но все они находят применение в тех случаях, когда нужно максимально быстро и точно зарегистрировать форму предмета. Преимущество подобных приборов на практике обеспечивается не только существенным упрощением процесса получения 3Dмакетов и, как следствие, экономией времени, но и возможностью работы со сложными деталями и элементами.

Классификация

Все приборы подобного рода делятся на две большие группы:

Контактные сканеры

Такие приборы используют, как ни трудно догадаться, контактный способ сканирования, то есть они исследуют сканируемый предмет буквально на ощупь, записывая соответствующие координаты. Для этого в их конструкции предусмотрено наличие специального высокочувствительного щупа. Контактные сканеры обладают такими несомненными плюсами, как высокая детализация, независимость от световых условий, возможность сканирования призматической части объекта. В то же время они довольно медленные в работе и во время сканирования возникает риск повреждения каких-либо хрупких предметов.

— Бесконтактные сканеры


3D сканер Sense

Здесь применяется бесконтактный способ сканирования. Такие приборы бывают активными и пассивными. Активные устройства сами излучают специальные волны, после чего обнаруживают их отражение и анализируют для получения компьютерной модели. В качестве такого излучения может использоваться рентген, ультразвук или световые потоки. Например, рентгеновские лучи и ультразвук используются в сканерах, используемых в медицинских целях. Пассивные приборы не формируют никакого излучения, а лишь обнаруживают отраженное от объекта окружающее излучение. Например, свет. В целом, бесконтактные сканеры отличаются экономичностью, привлекательной технологией сканирования и возможностью использования вне помещений с различной степенью освещенности.

Технологии сканирования

К текущему моменту наибольшее распространение получили две технологии 3D-сканирования:

— Лазерная


Лазерный сканер REVscan из серии ручных самопозиционирующихся сканеров Handyscan 3D

В данном случае устройства основаны на действии лазера. При использовании таких приборов на сканируемый объект, в определенных его точках наносятся особые светоотражающие маркеры, что позволяет обеспечить более высокую точность сканирования. Преимущество лазерных устройств состоит как раз в очень высокой точности создаваемых моделей. Однако лазерные приборы используются для сканирования исключительно статичных объектов и фактическине могут быть задействованы для получения моделей подвижных предметов (в этом случае процесс сканирования отнимает очень много времени). Благодаря тому, что лазерные сканеры дают возможность воссоздать невероятно точную модель, они применяются в разнообразных промышленных сферах, в частности, в машиностроении.

— Оптическая

Лазерные сканеры оказываются практически бесполезными, когда требуется отсканировать объекты, находящиеся в движении. Например, осуществить сканирование человеческого тела для медицинских задач. И тут на помощь приходят оптические приборы. Они осуществляют процесс сканирования предмета путем проецирования на него линий, формирующих своеобразный узор. Данные о поверхности предмета содержатся в искажениях формы проецируемой трехмерной картинки.

Оптические устройства могут похвастаться высокой скоростью работы. Это автоматически устраняет проблему искажения компьютерной модели в случае движения сканируемого объекта. Кроме того, здесь не требуется наносить на предмет специальные метки. То есть оптические сканеры могут с успехом применяться для сканирования подвижных предметов или человеческого тела. Несмотря на то, что оптические приборы уступают по точности создания 3D моделей лазерным аналогам, они характеризуются большей универсальностью. В то же время и у них есть свои минусы. В частности, оптические устройства не способны осуществлять сканирование предметов с зеркальными или блестящими поверхностями.

Области применения

Получение 3D моделей отдельных объектов или предметов является очень важной задачей для многих сфер деятельности человека. Можно перечислить лишь несколько ключевых областей, где 3D-сканеры находят широкое применение:

— Дизайн: создание трехмерного макета, на основе которого можно будет получить серийное изделие, изготовление дизайнерской упаковки, а также возможность получения и исследования формы объекта с ее последующей доработкой.

Медицина: возможность создания трехмерных моделей суставов, строений кости и отдельных органов человеческого тела, планирование операционных манипуляций, проектирование разнообразной анатомической обуви и ортопедических конструкций.

— Реверс-инжиниринг: получение точной компьютерной модели предметов, которых требуется воссоздать.

— Архитектура: 3D-сканеры могут применяться для сканирования на заказ различных архитектурных деталей и элементов, например, колонн, статуй и декораций.

— Индустрия развлечений: получение анимационных моделей для игр и фильмов, возможность создания цифрового мультимедиа контента, основанного непосредственно из концептуальной модели разработчика. Это актуально, прежде всего, для видеоигр и разработки игровых персонажей, навеянных творческой фантазией.

— Строительная промышленность: получение чертежей мостов и сооружений в трехмерном исполнении, реконструкция автомобильных трасс и магистралей.

— Контроль качества продукции: проверка соответствия создаваемой продукции установленным требованиям и техническим нормам.

— Музейное дело и сохранение культурного наследия: точное восстановление формы устаревших скульптур или памятников для их последующей реконструкции, возможность организации виртуальных музейных экскурсий, сканирование старинных, антикварных предметов.

— Архивирование: создание цифрового архива прототипов изделий.

— Киноиндустрия: получение цветной трехмерной модели человека.

Итак, использование столь технологичного прибора, как 3D-сканер, может облегчить деятельность человека во многих сферах. Это динамично развивающаяся технология, которая предоставляет уникальные возможности – от планирования медицинских операций и создания объемного дизайн-макета до контроля качества создаваемых изделий. 3D-сканеры требуются во всех случаях, когда нужно определить форму предмета с большой точностью и в минимально короткие сроки.