Человечество всегда любило делиться на группы: католики и протестанты, вегетарианцы и мясоеды, поклонники сенсорных экранов и те, кто не испытывает к ним особой тяги. К счастью, техно-гики вряд ли развяжут войну или крестовый поход против тех, кто не разделяет их точку зрения, несмотря на то, что армия приверженцев «пальцеориентированных» интерфейсов растет со скоростью развития самой технологии. Как же это все устроено?

Смартфоны и планшеты: как работает экран?

Первый сенсорный экран появился 40 лет назад в США. Сетка ИК-лучей, состоявшая из 16х16 блоков, была установлена в компьютерную систему Plato IV. Первый телевизор с сенсорным экраном показали на всемирной ярмарке 1982 года, спустя год презентовали первый персональный компьютер HP-150. В телефонах сенсорные экраны появились гораздо позже: в 2004 году на 3GSM Congress (так в то время называли выставку Mobile World Congress) компания Philips представила на суд журналистов три модели (Philips 550, 755 и 759). В то время операторы сотовой связи возлагали большие надежды на сервис MMS, поэтому основные функции сенсорного экрана сводились к развлекательным: для того чтобы сделать MMS более эмоциональными, разработчики предлагали пользователям обрабатывать фото с помощью стилуса – подписывать, пририсовывать детали – и только потом отправлять адресату.

Тогда же появилась возможность пользоваться виртуальной клавиатурой, но так как все модели обладали цифровой, а сенсорный экран значительно увеличивал стоимость устройств, про них на время забыли. Через год появился Fly X7 – полностью сенсорный бесклавиатурный моноблок, к сожалению, с рядом аппаратных недоработок, которые вкупе с тогдашней безызвестностью брэнда похоронили его среди ничем не примечательных моделей. И это были не единственные попытки создать что-то новое, однако несмотря на ряд предшественников, первыми полноценными «пальцеориентированными» моделями можно назвать лишь Apple iPhone, LG KE850 PRADA и линейку HTC Touch, появившуюся на рынке в 2007 году. Именно они положили начало эре сенсорных телефонов.

Строго говоря, сенсорный элемент экраном не является – это проводящая поверхность, которая работает в паре с экраном и позволяет вводить данные с помощью пальца или иного предмета.

Как экран распознает касание?

Существует множество типов сенсорных экранов, но мы остановимся только на тех, которые широко используются в мобильных устройствах: смартфонах и планшетах.

Резистивный дисплей состоит из гибкой пластиковой мембраны и стеклянной панели, пространство между которыми заполнено микроизоляторами, которые изолируют токопроводящую поверхность. Когда вы нажимаете на экран пальцем или стилусом, панель и мембрана замыкаются, а контроллер регистрирует изменение сопротивления, ориентируясь на которое умная электроника определяет координаты нажатия. Основные плюсы – дешевизна и простота изготовления, что позволяет снизить рыночную стоимость конечного устройства.

Также к несомненным преимуществам можно отнести то, что экран реагирует на любое нажатие – при работе с ним не обязательно использовать специальный токопроводящий стилус или палец, для этого вполне подойдет авторучка или любой другой предмет, которым вы сможете надавить на определенную точку экрана. Резистивный экран устойчив к загрязнениям. Ряд операций можно провести даже рукой в перчатке – например, ответить на звонок в холодное время года. Однако не обошлось и без недостатков. Резистивный экран легко царапается, поэтому его желательно закрывать специальной защитной пленкой, что в свою очередь не лучшим образом сказывается на качестве изображения. Более того, эти царапины имеют свойство увеличиваться в размерах.

Экран обладает невысокой прозрачностью – пропускает всего 85% света, исходящего от дисплея. При низких температурах экран «подмерзает» и хуже реагирует на нажатия, не очень долговечен (35 млн нажатий в одну точку). Предтечей резистивных экранов были матричные сенсорные, основу которых составляла сенсорная сетка: на стекло наносились горизонтальные проводники, на мембрану – вертикальные. При прикосновении к экрану направляющие замыкались и указывали координаты точки. Эта технология используется до сих пор, но в смартфонах ее уже практически не встретишь.

Схема резистивного экрана

Технология емкостных экранов основана на том, что человек обладает большой электрической емкостью и способен проводить ток. Для того чтобы все работало, на экран наносится тонкий токопроводящий слой, а к каждому из четырех углов подводится слабый переменный ток небольшой величины. При прикосновении к экрану происходит утечка точка, которая зависит от того, насколько далеко от угла дисплея произошло касание. По этой величине и определяются координаты точки. Такие экраны более устойчивы к царапинам, не пропускают жидкость, более долговечны (около 200 млн нажатий) и прозрачны по сравнению с резистивными, к тому же, реагируют на легчайшие прикосновения. Однако у этого есть и свои минусы – во время разговора можно неловко задеть телефоном ухом и запросто запустить какое-нибудь приложение, рукой в перчатке на звонок не ответишь – электропроводимость не та. Более высокая стоимость экрана, разумеется, сказывается на цене устройства.

Схема емкостного экрана

Как работает мой "айфон"?

К более продвинутым разновидностям емкостных экранов относятся проекционно-емкостные. На внутреннюю поверхность стекла наносится электрод, в качестве второго электрода выступает человек. При прикосновении к экрану образуется конденсатор, измеряя емкость которого можно определить координаты нажатия. Так как электрод нанесен на внутреннюю поверхность экрана, тот весьма устойчив к загрязнениям; слой стекла может достигать 18 мм, что позволяет значительно повысить срок жизни дисплея и устойчивость к механическим повреждениям.

Одна из самых интересных фишек проекционно-емкостных экранов – поддержка технологии мультитач. Также они обладают большой чувствительностью и имеют относительно широкий температурный диапазон работы, но с рукой в перчатке взаимодействуют по-прежнему не очень. Казалось бы, это может смутить потенциальных покупателей, однако несколько лет назад кто-то из предприимчивых корейских фанатов iPhone догадался использовать в качестве стилуса обыкновенную сосиску, электропроводимость которой позволяла ответить на звонок. Неоднозначный тренд вызвал бурю восторга на форумах и привлек внимание производителей аксессуаров, которые запустили в продажу специальный стилус-сосиску. Перед обычной сосиской у него есть как минимум один плюс – он не оставляет жирных следов на экране девайса.

Схема проекционно-емкостного экрана

Вне зависимости от технологии работы экрана, у него есть ряд типичных характеристик. Помимо разрешения, к основным характеристикам экрана можно отнести угол обзора и цветопередачу, которая зависит от типа дисплея. Понятие цветопередачи неразрывно связано с «глубиной цвета» - термином, обозначающим объем памяти в количестве бит, используемых для хранения и передачи цвета. Чем больше бит, тем глубже цвета. Современные LCD-дисплеи в смартфонах и планшетах отображают 18-битный цвет (более 262 тысяч оттенков). Максимально возможным на данный момент является 24-битный TrueColor, который способен воспроизвести более 16 млн оттенков в AMOLED и IPS-матрицах.

Угол обзора, как и любой угол, измеряется в градусах и характеризует величину, при которой яркость и читаемость экрана падает не больше, чем в два раза, если смотреть на него прямо перпендикулярно. Этой характеристикой обладают LCD-дисплеи, но не OLED.

Сравнение медиаплееров: плюсы и минусы

Модель
Тип экрана
Недостатки
Достоинтсва

Проекционно-емкостный

  • Не управляется при помощи стилуса
  • Поддержка multitouch

AMOLED
  • Сильно бликует на солнце


  • Неравномерная подсветка
  • Достоверная цветопередача
  • Большие углы обзора
  • Низкий уровень энергопотребления


TFT TN
  • Плохая цветопередача
  • Малый угол обзора
  • Быстрый отклик
  • Низкая стоимость


IPS
  • Время отклика
  • Хорошие углы обзора
  • Хорошая контрастность
  • Хорошая цветопередача

ZOOM.CNews

Типы экранов смартфонов и планшетов

На данный момент при производстве смартфонов и планшетов, как правило, используются либо LCD, либо OLED-дисплеи.

В основе LCD-экранов лежат жидкие кристаллы, которые не обладают собственным свечением, поэтому в ультимативном порядке требуют лампу задней подсветки. Под внешним воздействием (температурным или электрическим) кристаллы могут изменять структуру и становиться непрозрачными. Управляя током, на дисплее можно создавать надписи или картинки.

Схема ЖК-пикселя

Дисплеи на жидких кристаллах, используемые в смартфонах и планшетах, в большинстве своем имеют активную матрицу (TFT). В TFT-матрицах используются прозрачные тонкопленочные транзисторы, которые располагаются прямо под поверхностью экрана. За каждую точку изображения отвечает отдельный транзистор, поэтому картинка обновляется быстро и непринужденно.

С появлением LCD TFT-матриц время отклика дисплея значительно повысилось, но остались проблемы с цветопередачей, углами обзора и битыми пикселями.

Схема ЖК-пикселя

Самые распространенные TFT-матрицы - TN+film и IPS. TN+film – самая простая технология. Film – это дополнительный слой, который применяют для увеличения угла обзора. Из плюсов таких матриц – маленькое время отклика и невысокая себестоимость, минусы – плохая цветопередача и, увы, углы обзора (120-140 градусов). В IPS-матрицах (In-Plane-Switchin) удалось увеличить угол обзора до 178 градусов, повысить контрастность и цветопередачу до 24 бит и добиться глубокого черного цвета: в этой матрице второй фильтр всегда перпендикулярен первому, поэтому свет через него не проходит. Но время отклика по-прежнему осталось на низком уровне. Super-IPS является прямым наследником IPS с уменьшенным временем отклика.

PLS-матрица (Plain-to-Line Switchin) появилась в недрах компании Samsung как альтернатива IPS. К ее достоинствам можно отнести более высокую плотность пикселей, чем у IPS, высокую яркость и хорошую цветопередачу, низкое энергопотребление, большие углы обзора. Время отклика сравнимо с Super-IPS. Среди недостатков – неравномерная подсветка. Следующее поколение, Super-PLS, обскакало IPS в углах обзора на 100% и на 10% по показателям контрастности. Также эти матрицы оказались дешевле в производстве на целых 15%.

При производстве OLED-дисплеев используют органические светодиоды, которые под воздействием электричества испускают собственное свечение. По сравнению с LCD-дисплеями, у OLED – множество плюсов. Во-первых, они не используют дополнительную подсветку, а значит, аккумулятор смартфона разряжается не так быстро, как в случае с LCD. Во-вторых, OLED-дисплеи тоньше. От этой характеристики напрямую зависит толщина и дизайн девайса. К тому же, OLED-дисплеи могут быть гибкими, что предвещает отличные перспективы развития. У OLED отсутствует такой параметр как «угол обзора» - изображение хорошо просматривается с любого угла. По яркости и контрастности (1000000:1) OLED также лидирует.

Его хвалят за живые и насыщенные цвета и отдельно – за глубокий черный. Но есть, конечно, и минусы. Одним из основных можно назвать недолговечность: органические соединения неустойчивы к окружающей среде и имеют обыкновение выгорать, причем, одни цвета спектра страдают больше, чем другие. Хотя если вы меняете телефон раз в три года, вряд ли это станет аргументов против покупки. К тому же, до сих пор изготовление OLED обходится дороже, чем LCD.

Схема OLED

OLED-экраны второго поколения тоже в большинстве своем имеют активную матрицу TFT. Называются они AMOLED. Главное преимущество – еще более низкое энергопотребление, недостатки – нечитаемость картинки при ярком солнечном свете.

Схема AMOLED

Следующим шагов в развитии технологии стали SuperAMOLED-экраны, которые впервые начала использовать Samsung. Принципиальное их отличие от AMOLED состоит в том, что пленки с активными транзисторами (TFT) интегрированы в пленку из полупроводников. Это дает прирост яркости на 20%, снижение электропотребления на 20% и повышение читаемости на солнечном свете на целых 80%!

Схема SUPERAMOLED

Не стоит путать экраны, произведенные по технологии OLED, с экранами с LED-подсветкой – это совсем разные вещи. В последнем случае обычный ЖК-дисплей получает заднюю или боковую светодиодную подсветку, которая, конечно, улучшает качество изображения, но до AMOLED или SuperAMOLED все равно не дотягивает.

Что нас ждет в будущем?

На данный момент самые ясные и предсказуемые перспективы ожидают OLED-экраны. Уже сейчас в Сети можно найти информацию о технологии ближайшего будущего QLED – светодиодах на основе квантовых точек (полупроводниковый нанокристалл, который светится, когда подвергается воздействию тока или света). Сильными сторонами этой технологии являются высокая яркость, невысокая стоимость производства, широкий диапазон цветов, низкое энергопотребление. Квантовые точки, которые лежат в основе новой технологии, имеют еще одно важное свойство – они способны излучать спектрально чистые цвета. Уже сейчас этой технологии предрекают блестящее будущее. В Samsung уже разработали полноцветный 4-дюймовый QLED-дисплей, но в серийное производство новинку запускать пока не торопятся.

Прототип QLED-дисплея

Зато в Samsung подтвердили, что уже в этом году начнется серийное производство гибких OLED-дисплеев. Вероятно, первыми устройствами станут смартфоны и планшеты. Малая толщина экрана и физические свойства панели позволят существенно увеличить полезную площадь экрана и развяжут руки техно-дизайнерам.

В качестве другой перспективной технологии можно назвать IGZO, которой занимается компания Sharp. В ее основе лежат исследования профессора Хидео Хосоно, который решил присмотреться к альтернативным полупроводникам и в результате разработал технологию TAOS (Transparent Amorphous Oxide Semiconductors) - прозрачные аморфные оксидные полупроводники, которые содержат окислы индия, галлия и цинка (InGaZnO), сокращенно - IGZO. Отличия смеси от аморфного кремния, который использовался при производстве TFT, позволяет существенно снизить время отклика, значительно повысить разрешение экрана, сделать его ярче и контрастнее. Компания Apple весьма заинтересовалась перспективами этой технологии и вложила в производство дисплеев IGZO миллиард долларов.

Совсем недавно рынок мобильных устройств мог предложить в основном кнопочные устройства. Лишь изредка в руках у людей оказывались КПК и прочие диковинки, которые имели сенсорный экран. Но времена меняются, и технологии не стоят на месте. Теперь прилавки практически полностью избавились от кнопочных устройств, предоставив огромнейший выбор сенсорных телефонов и планшетов. При этом разнообразие форм, моделей и качества гаджетов просто поражает. Но все они имеют одинаковый принцип ввода и вывода информации - сенсорный экран, который также имеет свои разновидности. Рассмотрим, что такое тачскрин, какие его виды бывают и как провести их калибровку.

Виды сенсоров

С самого начала давайте дадим определение тачскрину. Тачскрин - это устройство ввода какой-либо информации в телефон или планшет. Он предназначается для адекватного восприятия устройством приказов. Часто тачскрин (или сенсор) путают с экраном, но это абсолютно две разные вещи.

Рынок на сегодняшний день предлагает 4 основных вида сенсоров для мобильных устройств:

  • резистивный;
  • индукционный;
  • емкостной;
  • инфракрасный.

Их можно встретить на самых различных устройствах и, в свою очередь, от вида тачскрина зависит частично их стоимость. Рассмотрим более подробно каждых из них.

Резистивный тачскрин

Резистивный вид тачскринов работает по принципу реагирования на изменения геометрических параметров. Так, чтобы получить отклик от экрана, нужно на него слегка нажать. По этой причине можно сразу сказать о недостатках, которые имеет резистивный тачскрин. Что это плохой показатель - ничего не сказать. Все дело в самом нажатии, по причине которого очень сильно портится экран. И хоть работать с таким тачскрином довольно просто в перчатках или при помощи стилуса, но изображение получается блеклым и через некоторое время появляются царапины.

Индукционный тачскрин

Данный вид тачскринов располагается позади твердого стекла и управление им можно производить лишь при помощи специального стилуса. Это очень неудобно, так как при утере или поломке этого предмета для управления нужно будет выложить немалую сумму денег на покупку.

Емкостной тачскрин

Этот вид тачскринов можно назвать усовершенствованной формой резистивных сенсоров. Он также находится сверху самого экрана и немного портит изображение. Для управления можно применять как стилус, так и пальцы. Есть возможность поддержки мультитача (чего нет у предыдущих вариантов) и принцип работы заключается в разнице электрического сопротивления. Это позволяет вводить информацию лишь при помощи легкого касания. Недостатком является невозможное управление сторонними предметами и пальцами в перчатках.

Инфракрасный тачскрин

Эти сенсоры работают по принципу инфракрасной сетки. Инфракрасные тачскрины являются универсальными. Они не портят изображение, но, в свою очередь, имеют длительный отклик и низкую точность.

Примерно в 80% сенсорных устройств используется емкостной сенсор. Он максимально удобен, стоит недорого и при этом имеет высокие показатели скорости отклика. Резистивный реже встречается, но и он также применяется в мобильных устройствах по причине своей дешевизны.

Калибровка тачскрина

В некоторых случаях, при замене сенсора или при сбоях в работе, требуется проводить калибровку. Эта процедура не сильно сложная, но требует максимального внимания, так как от нее зависит правильность отклика тачскрина.

Калибровка тачскрина - это процедура настройки сенсора, которая проводится для повышения точности реакции на касание к устройству. Для проверки, требуется эта процедура или нет, нужно снять защитную пленку (если ее нет - протереть хорошо экран), включить любой текстовый редактор и нажать на определенную букву. Если взамен выбранного варианта появился на экране другой знак - требуется проведение калибровки.

Калибровка резистивных сенсоров

Как правило, резистивные сенсорные экраны сразу при первом включении требуют откалибровать тачскрин. Что это нужная ежемесячная процедура - практически все забывают после первого включения. Также калибровку нужно проводить при замене экрана, сбое ПО, после падения или удара.

Резистивный сенсор откалибровать довольно просто благодаря «вшитой» утилите под названием ts_calibrate. Для ее запуска в самом меню телефона или планшета нужно зайти в раздел «Настройки». Далее выбрать пункт «Настройки телефона» и здесь нажать на «Калибровка». В результате этих действий экран станет черным и на нем появится крестик с красной точкой, расположенной по центру.

Чтобы откалибровать резистивный тачскрин для телефона или планшета, нужно нажимать в указанное точкой место. После каждого отклика она сдвигается и за четвертым нажатием в памяти устройства сохраняются все данные о сетке. Проверку после проведения калибровки проводить можно при помощи ввода текста. Если все правильно было сделано, то на экране будет появляться указанная буква или цифра.

Калибровка емкостного сенсора

Довольно редко, но бывают случаи, когда у емкостных сенсоров также сбивается сетка и их нужно калибровать. Проблема состоит в самой процедуре, так как эти тачскрины имеют очень сложную конструкцию и устройства не располагают «вшитым» ПО.

Проведение калибровки требуется начинать с загрузки утилиты TouchScreen Tune. Она легко определяет и настраивает сам тачскрин. Что это даст? Просто в случаях сбоя ПО или замены сенсора невозможно самостоятельно точно выставить сетку, которая бы работала адекватно. Вот благодаря такой программке можно подогнать все под нужные значения.

Дополнительно стоит отметить сбои в работе G-сенсора, который определяет положение смартфона или планшета в пространстве. В некоторых случаях он ведет себя неадекватно и очень сильно усложняет использование гаджета.

Для проведения калибровки акселерометра устройства под ОС Андроид требуется:

  1. Зайти в инженерное меню и одновременно нажать кнопку выключения и снижения уровня громкости.
  2. После появления меню на экране, при помощи той же кнопки громкости, нужно перелистать позиции и найти пункт Test Report.
  3. В открывшемся списке выбрать G-Sensor cali.

После этого просто положите гаджет на ровную поверхность и нажмите на Do Calibration. Нужно подождать, пока на экране перестанут появляться цифровые значения. Затем два раза нажать на кнопку увеличения громкости и выбрать Reboot. Калибровка акселерометра проведена.

Меры предосторожности

Калибровать резистивный тачскрин для планшета и телефона нужно обязательно раз в месяц, так как при активном использовании устройства быстро нарушается вся сетка. Если этого не делать, можно в результате получить неадекватный отклик на нажатие и неудобство в использовании. Но, как правило, с проведением калибровки в этом случае не возникает проблем.

Значительно сложнее обстоят дела с емкостными сенсорами. Они изначально не предполагают проведение калибровки в качестве стандартной процедуры. По этой причине перед тем как приступить к ее выполнению, нужно понимать, если калибровка будет проведена с большими нарушениями, то не получится вернуть все изначальные настройки, которые имел тачскрин. Что это значит? Это полная потеря функциональности устройства, которую практически невозможно восстановить даже в сервисных центрах. Следовательно, проведение калибровки емкостного сенсора нужно лишь в том случае, когда вы уверены в своих силах и навыках.

Планшеты, очень многие смартфоны, а также мониторы, дисплеи на бытовой технике оснащены сенсорными экранами. Эта технология радует, во-первых, своим привлекательным дизайном, во-вторых, своей функциональностью и простотой. К тому же, теперь нет необходимости расходовать пространство на размещение кнопок, что тоже очень удобно. О разновидностях экранов, их строении, принципах работы, плюсах и минусах читайте в нашей статье.

Самые популярные виды сенсоров

Резистивные сенсоры

Резистивный сенсор состоит из пластиковой мембраны (идет первой) и панели, изготовленной из стекла (идет вторым слоем). Между этими слоями прокладывается микроизолятор, призванный обезопасить друг от друга токопроводящие поверхности. На поверхностях слоев располагаются электроды (в первом слое они идут горизонтально, во втором - вертикально). Нажимая на экран, вы провоцируете замыкание слоев, специальный датчик считывает ваше нажатие и преобразовывает его в сигнал, который передается в процессор. В итоге экран реагирует на поставленную вашим касанием задачу - например, запускает видео, открывает документ и проч.

Данная технология считается достаточно простой, а потому на изготовление резистивных экранов тратится не слишком много средств. В итоге продукция с ними часто оказывается в бюджетном ценовом сегменте, что является главным достоинством техники с резистивными экранами. Техника с резистивными дисплеями представлена в большом количестве и ассортименте. В числе минусов этого типа сенсоров - отсутствие поддержки мультижестов, плохая видимость на солнце/при ярком свете, низкая износостойкость, невысокая точность.

Емкостные сенсоры

Данная технология является более совершенной - она поддерживает мультитач, отличается приличной видимостью при ярком свете и лучшей износостойкостью, более высоким уровнем точности. В числе недостатков - более значительная цена устройств с емкостными экранами, негативная реакция на воздействие жидкостей.

Как работает сенсорный экран данного типа? Ключевую роль здесь выполняют электроды, располагающиеся в углах дисплея и передающие друг другу переменные потоки электричества. В итоге образуется своеобразная сетка тока. Нажимая на экран, человек смещает направление тока, что позволяет системе определить место нажатия и соответственно вычислить и выполнить требующуюся команду. Тело человека в этом случае вместе с самим экраном выступают проводниками тока. Дисплей состоит из стекла, покрытого резистивным материалом, обеспечивающим эффективный электрический контакт.

Инфракрасные сенсоры

Рамка экрана (выполнен из стекла) включает приемники и излучатели инфракрасных лучей. Работая, они образуют на поверхности дисплея инфракрасную сетку. Нажав на экран, мы перекроем доступ определенным лучам - система вычислит это место и считает соответствующую задачу, которую ей нужно будет выполнить.

В числе недостатков - не очень высокая точность (особенно при ярком свете), «боязнь» загрязнений и высокая стоимость изделий с инфракрасными дисплеями. В числе плюсов - хорошая видимость на солнце, долговечность.

Менее популярные виды сенсоров

Матричные сенсоры

Матричная система подобна тому, как работает сенсор в резистивных моделях дисплеев. Только на мембрану наносятся вертикальные проводники тока, а на стекло - горизонтальные. Нажатие вызывает замыкание, которое система вычисляет и далее преобразует в выполнение той или иной задачи.

Матричные экраны сегодня редко где используются, поскольку они считаются очень неточными, а потому непродуктивными.

Экраны на поверхностно-акустических волнах

В разные углы стеклянной панели встраиваются пьезоэлектрические преобразователи. По периметру же дисплея находятся датчики, принимающие и отражающие сигналы. Специальный контроллер обеспечивает высокую частотность формирования сигналов. Нажатие на дисплей провоцирует выполнение какой-либо задачи.

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

Сенсорный экран – это устройство ввода и вывода информации посредством чувствительного к нажатиям и жестам дисплея. Как известно, экраны современных устройств не только выводят изображение, но и позволяют взаимодействовать с устройством. Изначально для подобного взаимодействия использовались всем знакомые кнопки, потом появился не менее известный манипулятор «мышь», существенно упростивший манипуляции с информацией на дисплее компьютера. Однако «мышь» для работы требует горизонтальной поверхности и для мобильных устройств не очень подходит. Вот тут на помощь приходит дополнение к обычному экрану – Touch Screen, который так же известен под названиями Touch Panel, сенсорная панель, сенсорная пленка. То есть, по сути, сенсорный элемент экраном не является – это дополнительное устройство, устанавливаемое поверх дисплея снаружи, защищающее его и служащее для ввода координат прикосновения к экрану пальцем или иным предметом.

Использование

Сегодня сенсорные экраны находят широкое применение в мобильных электронных устройствах. Изначально тачскрин применялся в конструкции карманных персональных компьютеров (КПК, PDA), теперь первенство держат коммуникаторы, мобильные телефоны, плееры и даже фото- и видеокамеры. Однако технология управления пальцем через виртуальные кнопки на экране оказалась настолько удобной, что ею оснащаются почти все платежные терминалы, многие современные банкоматы, электронные справочные киоски и другие устройства, используемые в общественных местах.

Ноутбук с сенсорным экраном

Нельзя не отметить и ноутбуки, некоторые модели которых оснащаются поворотным сенсорным дисплеем, что придает мобильному компьютеру не только более широкую функциональность, но и большую гибкость в управлении им на улице и на весу.

К сожалению, пока подобных моделей ноутбуков, называемых в народе «трансформеры», не так много, но они есть.

В целом, технологию сенсорного экрана можно охарактеризовать как наиболее удобную в случае, когда необходим мгновенный доступ к управлению устройством без предварительной подготовки и с потрясающей интерактивностью: элементы управления могут сменять друг друга в зависимости от активируемой функции. Тот, кто хоть раз работал с сенсорным устройством, сказанное выше прекрасно понимает.

Типы сенсорных экранов

Всего на сегодня известно несколько типов сенсорных панелей. Естественно, что каждая из них обладает своими достоинствами и недостатками. Выделим основные четыре конструкции:

  • Резистивные
  • Ёмкостные
  • Проекционно-ёмкостные

Кроме указанных экранов, применяются матричные экраны и инфракрасные, но ввиду их низкой точности их область применения крайне ограничена.

Резистивные

Резистивные сенсорные панели относятся к самым простым устройствам. По своей сути, такая панель состоит из проводящей подложки и пластиковой мембраны, обладающих определенным сопротивлением. При нажатии на мембрану происходит её замыкание с подложкой, а управляющая электроника определяет возникающее при этом сопротивление между краями подложки и мембраны, вычисляя координаты точки нажатия.

Преимущество резистивного экрана в его дешевизне и простоте устройства. Они обладают отличной стойкостью к загрязнениям. Основным достоинством резистивной технологии является чувствительность к любым прикосновениям: можно работать рукой (в том числе в перчатках), стилусом (пером) и любым другим твердым тупым предметом (например, верхним концом шариковой ручки или углом пластиковой карты). Однако имеются и достаточно серьезные недостатки: резистивные экраны чувствительны к механическим повреждениям, такой экран легко поцарапать, поэтому зачастую дополнительно приобретается специальная защитная пленка, защищающая экран. Кроме того, резистивные панели не очень хорошо работают при низких температурах, а также обладают невысокой прозрачностью – пропускают не более 85% светового потока дисплея.

Использование пера с сенсорным экраном

Применение

  • Коммуникаторы
  • Сотовые телефоны
  • POS-терминалы
  • Tablet PC
  • Промышленность (устройства управления)
  • Медицинское оборудование

Коммуникатор

Ёмкостные

Технология ёмкостного сенсорного экрана основана на принципе того, что предмет большой ёмкости (в данном случае человек) способен проводить электрический ток. Суть работы ёмкостной технологии заключается в нанесении на стекло электропроводного слоя, при этом на каждый из четырех углов экрана подается слабый переменный ток. Если прикоснуться к экрану заземленным предметом большой емкости (пальцем), произойдет утечка тока. Чем ближе точка касания (а значит, и утечки) к электродам в углах экрана, тем больше сила тока утечки, которая и регистрируется управляющей электроникой, вычисляющей координаты точки касания.

Ёмкостные экраны очень надежны и долговечны, их ресурс составляет сотни миллионов нажатий, они отлично противостоят загрязнениям, но только тем, которые не проводят электрический ток. По сравнению с резистивными они более прозрачны. Однако недостатками является все же возможность повреждения электропроводного покрытия и нечувствительность к прикосновениям непроводящими предметами, даже руками в перчатках.

Информационный киоск

Применение

  • В охраняемых помещениях
  • Информационные киоски
  • Некоторые банкоматы

Проекционно-ёмкостные

Проекционно-ёмкостные экраны основаны на измерении ёмкости конденсатора, образующегося между телом человека и прозрачным электродом на поверхности стекла, которое и является в данном случае диэлектриком. Вследствие того, что электроды нанесены на внутренней поверхности экрана, такой экран крайне устойчив к механическим повреждениям, а с учетом возможности применения толстого стекла, проекционно-ёмкостные экраны можно применять в общественных местах и на улице без особых ограничений. К тому же этот тип экрана распознает нажатие пальцем в перчатке.

Платежный терминал

Данные экраны достаточно чувствительны и отличают нажатия пальцем и проводящим пером, а некоторые модели могут распознавать несколько нажатий (мультитач). Особенностями проекционно-ёмкостного экрана являются высокая прозрачность, долговечность, невосприимчивость к большинству загрязнений. Минусом такого экрана является не очень высокая точность, а также сложность электроники, обрабатывающей координаты нажатия.

Применение

  • Электронные киоски на улицах
  • Платежные терминалы
  • Банкоматы
  • Тачпэды ноутбуков
  • iPhone

С определением поверхностно-акустических волн

Суть работы сенсорной панели с определением поверхностно-акустических волн заключается в наличии ультразвуковых колебаний в толще экрана. При прикосновении к вибрирующему стеклу, волны поглощаются, при этом точка прикосновения регистрируется датчиками экрана. Плюсами технологии можно назвать высокую надежность и распознавание нажатия (в отличие от ёмкостных экранов). Минусы заключаются в слабой защищенности от факторов окружающей среды, поэтому экраны с поверхностно-акустическими волнами нельзя применять на улице, а кроме того, такие экраны боятся любых загрязнений, блокирующих их работу. Применяются редко.

Другие, редкие типы сенсорных экранов

  • Оптические экраны. Инфракрасным светом подсвечивают стекло, в результате прикосновения к такому стеклу происходит рассеивание света, которое обнаруживается датчиком.
  • Индукционные экраны. Внутри экрана расположена катушка и сетка чувствительных проводов, реагирующих на прикосновение активным пером, питающимся от электромагнитного резонанса. Логично, что такие экраны реагируют на нажатия только специальным пером. Применяются в дорогих графических планшетах.
  • Тензометрические – реагируют на деформацию экрана. Такие экраны имеют малую точность, зато очень прочны.
  • Сетка инфракрасных лучей – одна из самых первых технологий, позволяющих распознавать прикосновения к экрану. Сетка состоит из множества светоизлучателей и приемников, расположенных по сторонам экрана. Реагирует на блокировку соответствующих лучей предметами, на основании чего и определяет координаты нажатия.
  • Сдвинуть два пальца вместе – уменьшение изображения (текста)
  • Раздвинуть два пальца в стороны – увеличение (Zoom)
  • Движение несколькими пальцами одновременно – прокрутка текста, страницы в браузере
  • Вращение двумя пальцами на экране – поворот изображения (экрана)

О пользе и недостатках сенсорных экранов

В карманных устройствах сенсорные экраны появились давно. Причин этому несколько:

  • Возможность делать минимальное количество органов управления
  • Простота графического интерфейса
  • Легкость управления
  • Оперативность доступа к функциям устройства
  • Расширение мультимедийных возможностей

Однако и недостатков хоть отбавляй:

  • Отсутствие тактильной обратной связи
  • Частая необходимость в использовании пера (стилуса)
  • Возможность повреждения экрана
  • Появление отпечатков пальцев и других загрязнений на экране
  • Более высокое потребление энергии

В результате, полностью избавиться от клавиатуры не всегда получается, ведь гораздо удобнее набирать текст с помощью привычных клавиш. Зато сенсорный экран интерактивнее, благодаря более оперативному доступу к элементам меню и настройкам современных гаджетов.

Надеемся, что этот материал поможет вам при выборе устройства с сенсорным экраном.

Обсудить на форуме