Оценка: 4.86 Голосов: 7 Комментарии: 10

Начнем с теории…

Что такое ARP и зачем это нам

ARP (“Address Resolution Protocol” - протокол определения адреса ) - использующийся в компьютерных сетях протокол низкого уровня, предназначенный для определения адреса канального уровня по известному адресу сетевого уровня. Наибольшее распространение этот протокол получил благодаря повсеместности сетей IP, построенных поверх Ethernet, поскольку практически в 100 % случаев при таком сочетании используется ARP.

ARP протокол работает с MAC адресами. Свой индивидуальный MAC адрес есть у каждой сетевой карты.

MAC-адрес (“Media Access Control” - управление доступом к среде ) - это уникальный идентификатор, сопоставляемый с различными типами оборудования для компьютерных сетей. Большинство сетевых протоколов канального уровня используют одно из трёх пространств MAC-адресов, управляемых IEEE: MAC-48, EUI-48 и EUI-64. Адреса в каждом из пространств теоретически должны быть глобально уникальными. Не все протоколы используют MAC-адреса, и не все протоколы, использующие MAC-адреса, нуждаются в подобной уникальности этих адресов.

Рис.1. Путь к ARP таблице.

Рис.2. ARP таблица.

На Рисунке 2 мы видим ARP таблицу. В ней три записи, они добавляются автоматически и имеют следующую структуру. IP Adress – это, собственно, IP адрес компьютера сети, MAC Adress – это mac адрес этого же компьютера, и Interface, который указывает за каким интерфейсом находится данный компьютер. Обратите внимание, что напротив всех записей есть буква D. Она означает то, что эта запись динамическая и будет изменена, если изменятся какие-то данные. То есть, если пользователь случайно введет неправильный IP адрес, то просто изменится запись в ARP таблице и больше ничего. Но нам это не подходит. Нам нужно застраховаться от таких случаев. Для этого в ARP таблицу вносятся статические записи. Как это сделать? Существует два способа.

Рис.3. Добавляем Статическую запись первым способом.

Способ первый. Как обычно нажимаем красный плюс. В появившемся окне вводим IP адрес, MAC адрес и выбираем интерфейс, за которым находится данный компьютер.

Рис.4. Добавляем Статическую запись вторым способом.

Способ второй. Выбираем нужную запись, кликаем два раза левой клавишей мыши, в появившемся окне нажимаем кнопку Make Statik . Статическая запись добавлена.

Рис.5. Таблица со статическими записями.

Как видно на рисунке 5 – напротив добавленной записи отсутствует буква D. Это говорит о том, что запись статическая.

Теперь, если пользователь случайно введет не свой адрес, Mikrotik , проверив соответствие IP и МАС адреса в ARP таблице и, не найдя нужной записи, не даст пользователю выйти в интернет, тем самым наведет пользователя на мысль о том, что он, возможно, был не прав и надо бы позвонить администратору.

Еще на что хотелось бы обратить ваше внимани е: эти записи применяются для пакетов проходящих через router.

Маршрутиза́тор или роутер - сетевое устройство, которое принимает решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети на основании информации о топологии сети и определённых правил.

Если нужно, чтобы правила применялись к Bridge(бридж), то в Bridge нужно включить функцию Use IP Firewall (рис.6.).

Бридж - это способ соединения двух сегментов Ethernet на канальном уровне, т.е. без использования протоколов более высокого уровня, таких как IP. Пакеты передаются на основе Ethernet-адресов, а не IP-адресов (как в маршрутизаторе). Поскольку передача выполняется на канальном уровне (уровень 2 модели OSI), все протоколы более высокого уровня прозрачно проходят через мост.

Рис.6 . Включение функции Use IP Firewall.

Евгений Рудченко

Протокол ARP предназначен для определения адресов канального уровня (MAC-адресов) по известным IP-адресам. Это очень важный протокол, его работа напрямую влияет на работоспособность сети в целом.

Назначение протокола ARP

Для взаимодействия устройств друг с другом необходимо, чтобы у передающего устройства был IP- и MAC-адреса получателя. Когда одно из устройств пытается установить связь с другим, с известным , ему необходимо определить MAC-адрес получателя. имеет в своем составе специальный протокол, называемый ARP (Address Resolution Protocol - протокол преобразования адресов), который позволяет автоматически получить MAC-адрес. На рис. ниже проиллюстрирован процесс, позволяющий определить MAC-адрес, связанный с известным IP-адресом.

Некоторые устройства хранят специальные ARP-таблицы, в которых содержится информация о MAC- и IP-адресах других устройств, подключенных к той же локальной сети. ARP-таблицы позволяют установить однозначное соответствие между IP- и MAC-адресами. Такие таблицы хранятся в определенных областях оперативной памяти и обслуживаются автоматически на каждом из сетевых устройств (см. таблицы ниже). В редких случаях приходится создавать ARP-таблицы вручную. Обратите внимание, что каждый компьютер в сети поддерживает свою собственную ARP-таблицу.

Куда бы не передавались сетевым устройством данные, для их пересылки всегда используется информация, хранящаяся в ARPтаблице (рис. ниже: одно из устройств хочет передать данные другому устройству).

Функционирование протокола ARP в подсетях

Для передачи данных от одного узла другому отправитель должен знать IP- и MAC-адрес получателя. Если он не может получить искомый физический адрес из собственной ARP-таблицы, инициируется процесс, называемый ARPзапросом, ко торый проиллюстрирован на рис. выше.

ARP-запрос позволяет узлу определить MAC-адрес получателя. Узел создает фрейм ARP-запроса и рассылает его всем сетевым устройствам. Фрейм ARP-запроса состоит из двух частей:

  • заголовка фрейма;
  • сообщения ARP-запроса.

Для того чтобы все устройства могли получить ARP-запрос, используется широковещательный MAC-адрес. В схеме MAC-адресации широковещательный адрес содержит во всех битах шестнадцатеричное число F и имеет, таким образом, вид FF-FF-FF-FF-FF-FF (Такая запись MAC-адреса называется канонической, в ней части адреса разделены дефисом (-); существует также альтернативная запись, в которой части адреса разделены двоеточием (:).). Поскольку пакеты ARP-запроса передаются в широковещательном режиме, все сетевые устройства, подключенные к локальной сети, могут получить такие пакеты и передать их протоколам более высоких уровней для последующей обработки. Если IP-адрес устройства совпадает с IP-адресом получателя в широковещательном ARP-запросе, это устройство отвечает отправителю, сообщая свой MAC-адрес. Такое сообщение называется ARP-ответом.

После получения ARP-ответа устройство-отправитель широковещательного ARP-запроса извлекает MAC-адрес из поля аппаратного адреса отправителя и обновляет свою ARP-таблицу. Теперь это устройство может надлежащим образом адресовать пакеты, используя как MAC-, так и IP-адрес. Полученная информация используется для инкапсуляции данных на втором и третьем уровнях перед их отправкой по сети. Когда данные достигают пункта назначения, на канальном уровне проводится проверка на соответствие адреса, отбрасывается канальный заголовок, который содержит MAC-адреса, и данные передаются на сетевой уровень. На сетевом уровне проверяется соответствие собственного IP-адреса и IP-адреса получателя, содержащегося в заголовке третьего уровня. На сетевом уровне отбрасывается IP-заголовок, и инкапсулированные данные передаются на следующий уровень - транспортный (уровень 4). Подобный процесс повторяется до тех пор, пока оставшиеся, частично распакованные, данные не достигнут приложения (уровень 7), в котором будет прочитана пользовательская часть данных.

ARP кэш

На каждом хосте содержится ARP кэш (ARP cache). Записи в эше могут быть двух видов: статические и динамические. В современных сетевых ОС (Windows, Linux, BSD) можно просмотреть эти записи в консоли с помощью команды:

Очистка ARP кэша

Иногда в Windows ARP кэш оказывается поврежденным (действие вирусов, например) и его нужно очистить. «Симптомы» этой проблемы могут быть распознаны в не возможности отображения веб-страниц (time out) и ping`а других компьютеров.

Чтобы очистить ARP кэш в Windows нужно в командной строке набрать:

C:>netsh interface ip delete arpcache Ok.

Если не удалось очистить ARP кэш и появилось сообщение об ошибке вроде этого «Невозможно завершить исправление ошибки, так как не удается выполнить следующие действия: Выполнить очистку ARP-кэша». То нужно отключить службу «Маршрутизация и удаленный доступ» и попробовать снова. Процесс удаления ARP-кэша должен быть выполниться без ошибок.

Еще одна команда для очистки ARP-кэша:

ARP-spoofing

ARP-spoofing (ARP-poisoning) - это вид сетевой атаки в Ethernet-сетях в котором используются особенности работы протокола ARP. Суть механизма данной атаки заключается в следующем: перехватив широковещательный ARP-запрос в домене широковещательных рассылок, отправителю высылается ложный ARP-ответ, в котором атакующая сторона выдает себя за получателя (например, за маршрутизатор), а затем начинает контролировать весь трафик предназначенный для настоящего объекта в сети.

Противодействовать атакам такого рода можно отслеживая работу ARP (с помощью arpwatch) или шифруя передаваемый трафик на сетевом уровне (IPSec) и другими способами.

ARP и IPv6

В IPv6 больше не используется ARP. На его замену пришел NDP (The Neighbor Discovery Protocol ). Этот протокол описан в

Если компьютер контактирует с другим аналогичным устройством в той же сети, требуется физический или MAC-адрес. Но поскольку приложение предоставило IP-адрес получателя, ему нужен какой-то механизм для его привязки с MAC-адресом. Это делается по протоколу разрешения адресов (ARP). IP-адрес узла назначения является широковещательным, а узел-получатель сообщает источник его MAC-адреса.

Это значит, что в каждом случае, когда машина A намерена передать пакеты данных устройству B, она вынуждена отправить ARP-пакет для разрешения MAC-адреса B. Следовательно, это слишком сильно увеличивает нагрузку на трафик, поэтому для снижения стоимости связи, компьютеры, которые используют протоколы ARP, сохраняют кеш недавно приобретенных привязок адресов IP_to_MAC, т. е. они не должны повторно использовать этот протокол.

Современный вид

Сегодня используются несколько усовершенствований протокола ARP и его назначения. Так, когда машина A хочет отправить пакеты устройству B, возможно, что B отправит данные для A в скором времени. По этой причине, чтобы избежать ARP для машины B, A должна выполнить привязку адреса IP_to_MAC при запросе MAC-адреса B в специальном пакете.

Поскольку A направляет свой изначальный запрос для MAC-адреса B, каждый компьютер в сети должен извлекать и хранить в своем кеше привязку адреса IP_to_MAC A. Когда в сети появляется новый компьютер (например, при перезагрузке операционной системы), он может транслировать эту привязку, чтобы все остальные машины могли хранить его в своих кешах. Это позволит устранить множество ARP-пакетов всеми другими машинами, когда они хотят общаться с добавленным устройством.

Вариации ARP-протокола

Рассмотрим сценарий, при котором компьютер делает попытку связаться с какой-либо удаленной машиной с помощью программы PING при том, что ранее не было обмена IP-дейтаграммами между этими устройствами, и ARP-пакет должен быть отправлен для идентификации MAC-адреса удаленного компьютера.

Сообщение запроса Address Resolution Protocol (которое выглядит как обращение A.A.A.A к B.B.B.B - IP-адресам) транслируется в локальной сети с использованием протокола Ethernet типа 0x806. Пакет отбрасывается всеми машинами, за исключением целевой, которая отвечает сообщением ответа APR (AAAA - hh: hh: hh: hh: hh: hh где hh: hh: hh: hh: hh: hh - адрес источника Ethernet). Этот ответ является одноадресным для машины с IP-адресом B.B.B.B. Поскольку сообщение запроса протокола APR включало аппаратный адрес (а именно - источника Ethernet) запрашивающего компьютера, целевому устройству не требуется другое сообщение, чтобы понять это.

Взаимосвязь с другими протоколами

Как только вы поймете, для чего нужен протокол ARP, следует рассмотреть его взаимодействие с другими элементами сети.

RARP - это протокол, с помощью которого физическая машина в локальной сети может делать запрос, чтобы узнать свой IP-адрес из таблицы протокола или кэширования сервера шлюза. Это необходимо, так как на устройстве не может присутствовать постоянно установленный диск, где оно может постоянно хранить свой IP-адрес. Сетевой администратор создает таблицу в маршрутизаторе шлюза локальной сети, который сопоставляет адреса физического компьютера (либо управления доступом к среде - MAC) соответствующим «айпи». Когда новая машина настроена, ее клиентская программа RARP запрашивает с сервера RARP на маршрутизаторе для отправки его IP-адрес. Предполагая, что запись была настроена в таблице маршрутизатора, данный сервер RARP вернет «айпи» на компьютер, который может сохранить его для будущего использования. Таким образом, это тоже своеобразный протокол определения адреса.

Механизм в деталях

И машина, выдающая запрос, и сервер, на него отвечающий, использует физические сетевые адреса в процессе их короткой связи. Обычно запрашивающий компьютер не знает его. Таким образом, запрос передается всем машинам в сети. Теперь запросчик должен идентифицировать себя уникально для сервера. Для этого можно использовать либо серийный номер процессора, либо физический сетевой адрес устройства. При этом использование второго в качестве уникального идентификатора обладает двумя преимуществами:

  • Данные адреса всегда доступны и не обязательно связаны с кодом начальной загрузки.
  • Поскольку идентификационная информация зависит от сети, а не от ЦП, все машины в данной сети будут предоставлять уникальные идентификаторы.

Как и сообщение протокола ARP, запрос RARP отправляется с одного компьютера на другой, инкапсулированный в части данных сетевого кадра. Рамка Ethernet, содержащая его, имеет обычную преамбулу, Ethernet-источник и адреса назначения, а также поля типа пакета перед кадром. Кадр кодирует значение 8035, чтобы идентифицировать его содержимое как сообщение RARP. Часть данных кадра включает в себя 28-октетное сообщение.

Отправитель отправляет запрос RARP, который указывает себя как инициатор запроса и целевую машину, и передает свой физический сетевой адрес в поле целевого аппаратного адреса. Все устройства в сети получают запрос, но только те из них, кто уполномочен предоставлять RARP, обрабатывают запрос и отправляют ответ. Такие машины известны неофициально как серверы данного протокола. Для успешной реализации протоколов ARP/RARP сеть должна содержать как минимум один такой сервер.

Они отвечают на запрос, заполняя поле адреса целевого протокола, изменяя тип сообщения от запроса до ответа и отправляя ответ прямо на машину, отправляющую запрос.

Синхронизация транзакций RARP

Поскольку RARP напрямую использует физическую сеть, никакое иное программное обеспечение протокола не должно откликаться на запрос или повторно передавать его. ПО RARP должно выполнять эти задачи. Некоторые рабочие станции, полагающиеся на такой протокол для загрузки, предпочитают повторять попытку до бесконечности, пока не получат ответ. Иные реализации объявляют об отказе после нескольких попыток предотвратить наполнение сети ненужной трансляцией.

Преимущества Mulitple RARP Servers: большая надежность.

Недостаток: перегрузка может возникнуть, когда все серверы ответят.

Таким образом, чтобы избежать недостатков, можно использовать первичный и вторичный серверы. Каждому компьютеру, который запрашивает запрос RARP, назначается первичный сервер. Обычно он отвечает на все позывы, но если он терпит неудачу, тогда запросчик может взять тайм-аут и выполнить ретрансляцию запроса. Если второй сервер получает вторую копию запроса в течение короткого времени первого, он отвечает. Но все же может возникнуть проблема, при которой по умолчанию реагируют все вторичные серверы, тем самым перегружая сеть. Таким образом, проблема состоит в том, чтобы избежать одновременной передачи ответов с обоих серверов. Каждый вторичный сервер, который принимает запрос, вычисляет случайную задержку и затем отправляет ответ.

Недостатки RARP

Поскольку он работает на низком уровне, он требует прямых адресов в сети, что затрудняет работу приложений для создания сервера. Он не полностью использует возможности такой сети, как ethernet, которая применяется для отправки минимального пакета. Поскольку ответ с сервера содержит только одну небольшую часть информации, 32-разрядный интернет-адрес RARP формально описан в RFC903.

ICMP-протокол

В этом протоколе зашифрован механизм, который шлюзы и хосты используют для обмена информацией об управлении или ошибкой. Интернет-протокол обеспечивает надежную службу передачи данных без установления соединения, датаграмма перемещается от шлюза к шлюзу, пока не достигнет того, которое может доставить его непосредственно до конечного пункта назначения.

Если шлюз не может маршрутизировать или доставлять дейтаграмму, или если он обнаруживает необычное условие, такое как перегрузка сети, что влияет на его способность перенаправлять дейтаграмму, ему необходимо дать указание исходному источнику принять меры, чтобы избежать или устранить проблему.

Связующее звено

Протокол управления интернет-протоколом позволяет шлюзам отправлять сообщения об ошибках или управлять сообщениями на другие шлюзы или хосты. ICMP предоставляет связь между программным обеспечением протокола Интернета между компьютерами. Это механизм сообщений так называемого специального назначения, добавленный разработчиками к протоколам TCP/IP. Это позволяет шлюзам в Интернете информировать об ошибках либо направлять информацию о непредвиденных обстоятельствах.

Сам протокол IP не содержит ничего, чтобы помочь подключиться к тестированию отправителя или узнать о сбоях. Отчеты об ошибках и их исправлении сообщаются посредством ICMP только в отношении исходного источника. Он должен связывать ошибки с отдельными прикладными программами и предпринимать действия для устранения проблем. Таким образом, он предоставляет возможность для шлюза сообщать об ошибке. При этом он не полностью определяет действие, которое необходимо предпринять для исправления неполадок.

ICMP ограничивается в связи с исходным источником, но не с промежуточными ICMP-сообщениями. Они отправляются через Интернет в части данных дейтаграммы IP, которая сама перемещается по сети. Именно поэтому они тесно взаимосвязаны с ARP-протоколом. ICMP-сообщения маршрутизируются точно так же, как датаграммы, содержащие информацию для пользователей, не имея при этом дополнительной надежности или приоритета.

Исключение присутствует для процедур обработки ошибок, когда IP-датаграмма, несущая сообщения ICMP, не генерируется для ошибок, которые возникают из дейтаграмм, содержащих сообщения о неполадках.

Формат сообщения ICMP

Оно насчитывает в себе три поля:

  • 8-битное целочисленное поле TYPE, идентифицирующее сообщение;
  • 8-битовое поле CODE, которое предоставляет дополнительную информацию о его типе;
  • 16-разрядное поле CHECKSUM (ICMP использует одну и ту же контрольную сумму алгоритма, которая охватывает только сообщение этого протокола).

Кроме того, сообщения ICMP, информирующие об ошибках, во всех случаях включают в себя заголовок и начальные 64 бита данных дейтаграммы, вызывающих проблему.

Запросы и ответы

Протоколы TCP/IP предоставляют средства, помогающие сетевым менеджерам или пользователям идентифицировать сетевые проблемы. Один из чаще всего используемых инструментов отладки делает вызовы эхо-запроса ICMP и сообщения эхо-ответа. Хост или шлюз отправляет сообщение к определенному пункту назначения.

Любой компьютер, который принимает эхо-запрос, создает ответ, и возвращает его исходному отправителю. Запрос включает в себя необязательную область направляемых данных. Ответ имеет в себе копию данных, отправленных в запросе. Эхо-запрос и отклик, связанный с ним, могут применяться для проверки доступности достижимой цели и отклика.

Поскольку как запрос, так и ответ направляются в IP-датаграммах, успешное его получение подтверждает, что система исправно работает. Для этого должны быть соблюдены следующие условия:

  • IP-программное обеспечение источника должно маршрутизировать датаграмму;
  • Промежуточные шлюзы пунктом назначения и источником должны работать и правильно маршрутизировать дейтаграмму;
  • Должен быть запущен конечный компьютер, и на нем должно работать как программное обеспечение ICMP, так и IP;
  • Маршруты в шлюзах по обратному пути должны быть правильными.

Как это работает?

Работа протоколов ARP и ICMP тесно связана. Всякий раз, когда ошибка предотвращает маршрутизацию или доставку шлюзу датаграммы, он отправляет сообщение о недоступности адресата обратно в исходный код, а затем удаляет датаграмму. Неисправляемые неполадки в сети обычно подразумевают сбои в передаче данных. Поскольку сообщение включает в себя короткий префикс дейтаграммы, вызывавшей проблему, источник точно знает, какой из адресов недоступен. Направление может быть недоступно, поскольку аппаратное обеспечение временно не работает, отправитель сообщил несуществующий адрес назначения или потому, что шлюз не имеет маршрута к целевой сети.

Несмотря на то, что шлюзы отправляют не доходящие сообщения по назначению, если они не могут маршрутизировать или доставлять датаграммы, не все такие ошибки могут быть обнаружены. Если дейтаграмма содержит параметр исходного маршрута с неправильными данными, она может инициировать сообщение об ошибке маршрута источника.

Утилита командной строки ARP.EXE присутствует во всех версиях Windows и имеет один и тот же синтаксис. Предназначена для просмотра и изменения записей в кэш ARP (Address Resolution Protocol - протокол разрешения адресов), который представляет собой таблицу соответствия IP-адресов аппаратным адресам сетевых устройств. Аппаратный адрес - это уникальный, присвоенный при изготовлении, 6-байтный адрес сетевого устройства, например сетевой карты. Этот адрес также часто называют MAC-адресом (Media Access Control - управление доступом к среде) или Ethernet-адресом. В сетях Ethernet передаваемые и принимаемые данные всегда содержат MAC-адрес источника (Source MAC) и MAC-адрес приемника (Destination MAC).

Два старших бита аппаратного адреса используются для идентификации типа:

Первый бит - одиночный (0) или групповой (1) адрес.

Второй бит - признак универсального (0) или локально администрируемого (1) адреса.

Следующие 22 бита адреса содержат специальный код производителя, обозначаемый как MFG или OUI - универсальный код организации.

Таким образом, в сетях Ethernet, любое сетевое устройство имеет аппаратный адрес, состоящий из двух частей, значение которых зависит от производителя оборудования и конкретного экземпляра устройства. Старшая часть MAC - адреса, централизованно выделяется по лицензии каждому производителю сетевого оборудования. Например, 00:E0:4C - для сетевых устройств REALTEK SEMICONDUCTOR CORP. Крупным производителям сетевого оборудования обычно принадлежит несколько диапазонов OUI . Младшая часть MAC-адреса формируется при производстве сетевого устройства, и уникальна для каждого экземпляра.

Отображение IP-адресов (формируемых программным путем), в аппаратные адреса, выполняется с помощью следующих действий:

В сеть отправляется широковещательный запрос (ARP-request), принимаемый всеми сетевыми устройствами. Он содержит IP и Ethernet адреса отправителя, а также, целевой IP-адрес, для которого выполняется определение MAC-адреса.

Каждое устройство, принявшее запрос проверяет соответствие целевого IP-адреса, указанного в запросе, своему собственному IP-адресу. При совпадении, отправителю передается ARP-ответ (ARP-Reply), в котором содержатся IP и MAC адреса ответившего узла. Кадр с ARP-ответом содержит IP и MAC адреса как отправителя, так и получателя-составителя запроса.

Информация, полученная в ARP-ответе, заносится в ARP-кэш и может использоваться для обмена данными по IP-протоколу для данного узла. ARP-кэш представляет собой таблицу в оперативной памяти, каждая запись в которой содержит IP, MAC и возраст их действительности (от нескольких секунд, до нескольких часов). Возраст записи учитывается для того, чтобы обеспечить возможность повторного выполнения процедуры ARP при каком либо изменении соответствия адресов.

Формат командной строки ARP:

ARP -s inet_addr eth_addr

ARP -d inet_addr

ARP -a [-N if_addr] [-v]

Параметры командной строки ARP:

-a -отображает текущие ARP-записи, опрашивая текущие данные протокола. Если задан параметр inet_addr , то будут отображены IP и физические адреса только для заданного компьютера. Если ARP используют более одного сетевого интерфейса, то будут отображаться записи для каждой таблицы.

-g - то же, что и параметр -a .

-v - отображает текущие ARP-записи в режиме подробного протоколирования. Все недопустимые записи и записи в интерфейсе обратной связи будут отображаться.

inet_addr - определяет IP-адрес.

-N if_addr - отображает ARP-записи для заданного в if_addr сетевого интерфейса.

-d - удаляет узел, задаваемый inet_addr . Параметр inet_addr может содержать знак шаблона * для удаления всех узлов.

-s - добавляет узел и связывает адрес в Интернете inet_addr c физическим адресом eth_addr . Физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенными дефисом. Эта связь является постоянной

eth_addr - определяет физический адрес.

if_addr - если параметр задан, он определяет адрес интерфейса в Интернете, чья таблица преобразования адресов должна измениться. Если параметр не задан, будет использован первый доступный интерфейс.

В IP-сетях существует три способа отправки пакетов от источника к приемнику:

Одноадресная передача (Unicast );

Широковещательная передача (Broadcast );

При одноадресной передаче поток данных передается от узла-отправителя на индивидуальный IP-адрес узла-получателя.

Широковещательная передача предусматривает доставку потока данных от узла-отправителя множеству узлов-получателей, подключенных к данному сегменту локальной сети, с использованием широковещательного IP-адреса.

Многоадресная рассылка обеспечивает доставку потока данных группе узлов на IP-адрес группы многоадресной рассылки. Узлы группы могут находиться в данной локальной сети или в любой другой. Узлы для многоадресной рассылки объединяются в группы при помощи протокола IGMP (Internet Group Management Protocol, межсетевой протокол управления группами). Пакеты, содержащие в поле назначения заголовка групповой адрес, будут поступать на узлы групп и обрабатываться. Источник многоадресного трафика направляет пакеты многоадресной рассылки не на индивидуальные IP-адреса каждого из узлов-получателей, а на групповой IP-адрес.

Групповые адреса определяют произвольную группу IP-узлов, присоединившихся к этой группе и желающих получать адресованный ей трафик. Международное агентство IANA (Internet Assigned Numbers Authority, "Агентство по выделению имен и уникальных параметров протоколов Интернета"), которое управляет назначением групповых адресов, выделило для многоадресной рассылки адреса IPv4 класса D в диапазоне от 224.0.0.0 до 239.255.255.255.

Примеры использования ARP :

arp -a - отобразить таблицу соответствия IP и MAC адресов для данного компьютера.

arp -a | more - то же, что и в предыдущем случае, но с отображением информации в постраничном режиме.

arp -a > macaddr.txt - отобразить таблицу соответствия IP и MAC адресов для данного компьютера с выводом результатов в текстовый файл macaddr.txt .

Пример содержимого таблицы ARP:

Интерфейс: 127.0.0.1 --- 0x1

224.0.0.22                                                     статический
224.0.0.251                                                   статический
239.255.255.250                                           статический

Интерфейс: 192.168.1.133 --- 0x1c

Адрес в Интернете Физический адрес Тип

192.168.1.1                c8-2b-35-9a-a6-1e   динамический
192.168.1.132            00-11-92-b3-a8-0d   динамический
192.168.1.255            ff-ff-ff-ff-ff-ff            статический
224.0.0.22                  01-00-5e-00-00-16   статический
224.0.0.251                01-00-5e-00-00-fb   статический
224.0.0.252                01-00-5e-00-00-fc   статический
239.255.255.250        01-00-5e-7f-ff-fa     статический

В данном примере присутствуют записи ARP для петлевого интерфейса 127.0.0.1 и реального 192.168.1.133 . Петлевой интерфейс не используется для реальной передачи данных и не имеет привязки к аппаратному адресу. Таблица ARP реального интерфейса содержит записи для узлов с адресами 192.168.1.1 и 192.168.1.132 , а также записи для широковещательной (MAC-адрес равен ff-ff-ff-ff-ff-ff) и групповых рассылок (MAC-адрес начинается с 01-00-5e). МАС-адрес групповой рассылки всегда начинается с префикса, состоящего из 24 битов - 01-00-5Е. Следующий, 25-й бит равен 0. Последние 23 бита МАС-адреса формируются из 23 младших битов группового IP-адреса.

arp -s 192.168.1.1 00-08-00-62-F6-19 - добавить в таблицу ARP запись, задающую соответствие IP адреса 192.168.1.1 и физического адреса 00-08-00-62-F6-19

arp -d 192.168.1.1 - удалить из таблицы ARP запись для IP-адреса 192.168.1.1

arp -d 192.168.1.* - удалить из таблицы ARP записи для диапазона IP-адресов 192.168.1.1 - 192.168.1.254

Некоторые замечания по практическому использованию команды ARP:

Разрешение адресов по протоколу ARP выполняется только при операциях передачи данных по протоколу IP .
- время жизни записей в таблице ARP ограничено, поэтому, перед просмотром ее содержимого для конкретного адреса нужно выполнить ping на этот адрес.
- если ответ на ping не приходит, а запись для данного IP-адреса присутствует в таблице ARP, то этот факт можно интерпретировать как блокировку ICMP-пакетов брандмауэром пингуемого узла.
- невозможность подключения к удаленному узлу по протоколам TCP или UDP при наличии записей в таблице ARP для целевого IP, может служить признаком отсутствия служб обрабатывающих входящие подключения, или их блокировки брандмауэром (закрытые порты).
- ARP протокол работает в пределах локального сегмента сети. Поэтому, если выполнить ping на внешний узел (например ping yandex.ru), то в таблице ARP будет присутствовать запись для IP - адреса маршрутизатора, через который выполняется отправка пакета во внешнюю сеть.

Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ.

В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.

Принцип работы:

    Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно.

    Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным.

    В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес.

Arp-таблица для преобразования адресов

Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети.

ARP-таблицы строятся согласно документу RFC-1213 и для каждого IP-адреса содержит четыре кода:

    Ifindex - Физический порт (интерфейс), соответствующий данному адресу;

    Физический адрес - MAC-адрес, например Ethernet-адрес;

    IP-адрес - IP-адрес, соответствующий физическому адресу;

    тип адресного соответствия - это поле может принимать 4 значения: 1 - вариант не стандартный и не подходит ни к одному из описанных ниже типов; 2 - данная запись уже не соответствует действительности; 3 - постоянная привязка; 4 - динамическая привязка;

Примет таблицы для технологии Ethernet:

Ethernet-адрес

08:00:39:00:2F:C3

08:00:5A:21:A7:22

08:00:10:99:AC:5

Принято все байты 4-байтного IP-адреса записывать десятичными числами, разделенными точками. При записи 6-байтного Ethernet-адреса каждый байт указывается в 16-ричной системе и отделяется двоеточием.

ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой.

IP-адрес выбирает менеджер сети. Ethernet-адрес выбирает производитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется плата сетевого адаптера, то меняется и ее Ethernet-адрес.

Arp кэш.

    Эффективность функционирования ARP во многом зависит от ARP кэша (ARP cache), который присутствует на каждом хосте.

    Стандартное время жизни каждой записи в кэше составляет 20 минут с момента создания записи.

Порядок преобразования адресов

В ходе обычной работы сетевая программа, такая как TELNET, отправляет прикладное сообщение, пользуясь транспортными услугами TCP. Модуль TCP посылает соответствующее транспортное сообщение через модуль IP. В результате составляется IP-пакет, который должен быть передан драйверу Ethernet. IP-адрес места назначения известен прикладной программе, модулю TCP и модулю IP. Необходимо на его основе найти Ethernet-адрес места назначения. Для определения искомого Ethernet-адреса используется ARP-таблица.

Как же заполняется ARP-таблица? Она заполняется автоматически модулем ARP, по мере необходимости. Когда с помощью существующей ARP-таблицы не удается преобразовать IP-адрес, то происходит следующее:

    По сети передается широковещательный ARP-запрос.

    Исходящий IP-пакет ставится в очередь.

Каждый сетевой адаптер принимает широковещательные передачи. Все драйверы Ethernet проверяют поле типа в принятом Ethernet-кадре и передают ARP-пакеты модулю ARP. ARP-запрос можно интерпретировать так: "Если ваш IP-адрес совпадает с указанным, то сообщите мне ваш Ethernet-адрес". Пакет ARP-запроса выглядит примерно так:

Пример ARP-запроса

Каждый модуль ARP проверяет поле искомого IP-адреса в полученном ARP-пакете и, если адрес совпадает с его собственным IP-адресом, то посылает ответ прямо по Ethernet-адресу отправителя запроса. ARP-ответ можно интерпретировать так: "Да, это мой IP-адрес, ему соответствует такой-то Ethernet-адрес". Пакет с ARP-ответом выглядит примерно так:

Пример ARP-ответа

Этот ответ получает машина, сделавшая ARP-запрос. Драйвер этой машины проверяет поле типа в Ethernet-кадре и передает ARP-пакет модулю ARP. Модуль ARP анализирует ARP-пакет и добавляет запись в свою ARP-таблицу.

Обновленная таблица выглядит следующим образом: