Требования к качеству электроэнергии законодательно прописаны государственными стандартами и довольно жесткими нормативами. Электроснабжающие организации прилагают много усилий для их соблюдения, но, они не всегда реализуются.

В наших квартирах, да и на производстве, периодически возникают:

    полные отключения электричества на неопределенное время;

    апериодические кратковременные (10÷100 мс) высоковольтные (до 6 кВ) импульсы напряжения;

    всплески и снижения напряжения с различной продолжительностью;

    накладки высокочастотных шумов;

    уходы частоты.

Все эти неполадки отрицательно влияют на работу бытовых и офисных потребителей электроэнергии. Особенно страдают от качества электропитания микропроцессорные и компьютерные устройства, которые не только совершают сбои, но и могут полностью потерять свою работоспособность.

Назначение и виды источников бесперебойного питания

Чтобы сократить риски от возникновения неисправностей питающей электрической сети используются резервные устройства, которые принято называть источниками бесперебойного питания (ИБП) или UPS (образовано от сокращения английской фразы «Uninterruptible Power Supply») .

Они изготавливаются с разной конструкцией для решения специфических задач потребителя. Например, мощные ИБП с гелиевыми аккумуляторами способны поддерживать энергоснабжение целого коттеджа в течение нескольких часов.

Их АКБ получают заряд от линии электропередач, ветрогенератора, или других носителей электроэнергии через выпрямительное устройство инвертора. Они же подпитывают электрические потребители коттеджа.

Когда внешний источник отключается, то аккумуляторы разряжаются на подключенную в их сеть нагрузку. Чем больше емкость АКБ и меньше ток их разряда, тем дольше они работают.

Иисточники бесперебойного питания средней мощности могут резервировать , систем поддержания микроклимата в помещениях и подобного оборудования.

В то же время самые простые модели UPS способны только завершить программу аварийного отключения компьютера. При этом длительность всего процесса их работы не превысит 9÷15 минут.

Компьютерные источники бесперебойного питания бывают:

    встроенными в корпус устройства;

    внешними.

Первые конструкции распространены в ноутбуках, нетбуках, планшетах и подобных мобильных устройствах, работающих от встроенного аккумулятора, который снабжен схемой переключения питания и нагрузки.

АКБ ноутбука со встроенным контроллером является источником бесперебойного питания. Его схема в автоматическом режиме защищает работающее оборудование от неисправностей электросети.

Внешние конструкции ИБП , предназначенные для нормального завершения программ стационарного компьютера, изготавливаются отдельным блоком.

Их подключают через сетевой адаптер питания к электрической розетке. От них запитывают только те устройства, которые отвечают за работу программ:

    системный блок с подключенной клавиатурой;

    монитор, отображающий происходящие процессы.

Остальные периферийные устройства: сканеры, принтеры, акустические колонки и другое оборудование от UPS не запитывают. Иначе они при аварийном завершении программ будут забирать на себя часть энергии, накопленной в аккумуляторах.

Варианты построения рабочих схем ИБП

Компьютерные и промышленные UPS изготавливают по трем основным вариантам:

    резервирования электропитания;

    интерактивной схемы;

    двойного преобразования электроэнергии.

При первом методе резервной схемы , обозначаемым английскими терминами «Standby» или «Off-Line» напряжение поступает из сети к компьютеру через ИБП, в котором электромагнитные помехи устраняются встроенными фильтрами. Здесь же установлен , емкость которого поддерживается током заряда, регулируемым контроллером.

Когда пропадает или выходит за установленные нормативы внешнее питание, то контроллер направляет энергию АКБ на питание потребителей. Для преобразования постоянного тока в переменный подключается простой инвертор.

Преимущества UPS Standby

Источники бесперебойного питания схемы Off-Line обладают высоким КПД, при поданном на них напряжении, тихо работают, мало выделяют тепла и относительно дешевы.

Недостатки

UPS Standby выделяются:

    долгим переходом на питание от аккумулятора 4÷13 мс;

    искаженной формой выходного сигнала, выдаваемого инвертором в виде меандра, а не гармоничной синусоиды;

    отсутствием корректировки напряжения и частоты.

Такие устройства наиболее распространены на персональных компьютерах.

ИБП интерактивной схемы

Их обозначают английским термином ««Line-Interactive». Они выполняются по предыдущей, но более усложненной схеме за счет включения стабилизатора напряжения, использующего автотрансформатор со ступенчатым регулированием.

Это обеспечивает корректировку величины выходного напряжения, но управлять частотой сигнала они не способны.

Фильтрация помех в нормальном режиме и переход на инверторное питание при авариях происходит по алгоритмам UPS Standby.

Добавлением стабилизатора напряжения различных моделей с методиками управления им позволило создавать инверторы с формой сигнала не только меандра, но и синусоиды. Однако, небольшое количество ступеней регулирования на основе релейных переключений не позволяет реализовать функции полной стабилизации.

Особенно это характерно для дешевых моделей, которые при переходе на питание от аккумулятора не только завышают частоту выше номинальной, но и искажают форму синусоиды. Помехи вносит встроенный трансформатор, в сердечнике которого происходят процессы гистерезиса.

В дорогих моделях работают инверторы на полупроводниковых ключах. UPS Line-Interactive имеют большее быстродействие при переходе на питание от АКБ, чем у ИБП Off-Line. Оно обеспечивается работой алгоритмов синхронизации между входящим напряжением с выдаваемыми сигналами. Но при этом происходит некоторое занижение КПД.

ИБП Line-Interactive нельзя использовать для питания асинхронных двигателей, которые массово установлены на всей бытовой технике, включая системы отопления. Их используют для работы устройств с , где питание фильтруется и выпрямляется одновременно: компьютеров и бытовой электроники.

ИБП двойного преобразования

Эта схема UPS получила название по английскому словосочетанию On-line» и работает на оборудовании, требующем высококачественного питания. В ней производится двойная конверсия электроэнергии, когда синусоидальные гармоники переменного тока постоянно преобразуются выпрямителем в постоянную величину, пропускаемую через инвертор для создания повторной синусоиды на выходе.

Здесь АКБ постоянно подключен в схему, что исключает необходимость его коммутаций. Этим способом практически исключается период подготовки источника бесперебойного питания на переключения.

Работу ИБП On-line по состоянию аккумулятора можно разделить на три этапа:

    стадия заряда;

    состояние ожидания;

    разряд на работу компьютера.

Период заряда

Цепи входа и выхода синусоиды разорваны внутренним переключателем UPS.

Подключенный к выпрямителю аккумулятор получает энергию заряда до тех пор, пока его емкость не восстановится до оптимальных значений.

Период готовности

После окончания заряда АКБ автоматика источника бесперебойного питания замыкает внутренний переключатель.

Аккумулятор поддерживает состояние готовности к работе в буферном режиме.

Период разряда

АКБ автоматически переводится на питание компьютерной станции.

У источников бесперебойного питания, работающих по методике двойного преобразования электроэнергии, КПД в режиме питания от линии ниже, чем у других моделей из-за расхода энергии на выделение тепла и шума. Но в сложных конструкциях применяются методики, позволяющие увеличить КПД.

UPS On-line споосбны выправлять не только величину напряжения, но и его частоту колебаний. Это выгодно отличает их от предыдущих моделей и позволяет использовать для питания различных сложных устройств с асинхронными двигателями. Однако, стоимость таких устройств значительно выше предыдущих моделей.

Состав ИБП

В зависимости от вида рабочей схемы в комплект источника бесперебойного питания входят:

    аккумуляторы для накопления электроэнергии;

    Обеспечивающее поддержание работоспособности АКБ;

    инвертор для формирования синусоиды,

    схема управления процессами;

    программное обеспечение.

Для удаленного доступа к устройству может использоваться локальная сеть, а повысить надежность схемы можно за счет ее резервирования.

В отдельных источниках бесперебойного питания используется режим «Байпас», когда нагрузка запитывается отфильтрованным напряжением сети без работы основной схемы устройства.

Часть UPS имеет ступенчатый регулятор напряжения «Бустер», управляемый от автоматики.

В зависимости от необходимости выполнять сложные технические решения источники бесперебойного питания могут оснащаться еще дополнительными специальными функциями.

По мере своего развития цивилизация начинает потреблять все больше энергии, в частности, электрической — станки, заводы, электронасосы, фонари на улицах, лампы в квартирах… Появление радио, телевизоров, телефонов, компьютеров дало человечеству возможность ускорить обмен информацией, однако, еще сильнее привязало его к источникам электроэнергии, поскольку теперь, во многих случаях, пропадание электричества равносильно потере канала доставки информационного потока. Наиболее критична такая ситуация для ряда наиболее современных отраслей, в частности, там, где основным инструментом производства являются компьютерные сети.

Давно подсчитано, что через пару-тройку месяцев работы стоимость информации, хранящейся на компьютере, превышает стоимость самого ПК. Уже давно информация стала разновидностью товара — ее создают, оценивают, продают, покупают, накапливают, преобразуют… и порой теряют по самым разнообразным причинам. Разумеется, до половины проблем, связанных с потерей информации, возникает из-за программных или аппаратных сбоев компьютерами. Во всех остальных случаях, как правило, проблемы связаны с некачественным электроснабжением компьютера.

Обеспечение качественного питания компонентов ПК — залог стабильной работы любой компьютерной системы. От формы и качественных характеристик сетевого питания, от удачного выбора компонентов питания порой зависит судьба целых месяцев работы. Исходя из этих соображений, была разработана изложенная ниже методика исследования, призванная в дальнейшем стать основой тестирования качественных характеристик бесперебойных блоков питания.

  1. Положения ГОСТ
  2. Классификация ИБП (описание, схема)
    • Оффлайновые
    • Линейно-интерактивные
    • Онлайновые
    • Основные типы по мощностям
  3. Физика
    • a. Виды мощности, формулы расчета:
      • Мгновенная
      • Активная
      • Реактивная
      • Полная
  4. Тестирование:
    • Цель тестирования
    • Общий план проведения
    • Параметры для проверки
  5. Оборудование, использованное при тестировании
  6. Библиография
Положения ГОСТ

Все, что связано с электрическими сетями, в России регламентируется положениями ГОСТ 13109-97 (принят Межгосударственным Советом по стандартизации, метрологии и сертификации взамен ГОСТ 13109-87). Нормативы этого документа полностью соответствуют международным стандартам МЭК 861, МЭК 1000-3-2, МЭК 1000-3-3, МЭК 1000-4-1 и публикациям МЭК 1000-2-1, МЭК 1000-2-2 в части уровней электромагнитной совместимости в системах электроснабжения и методов измерения электромагнитных помех.

Стандартными показателями для электросетей в России, установленными ГОСТ, являются следующие характеристики:

  • напряжение питания — 220 В±10%
  • частота — 50±1 Гц
  • коэффициент нелинейных искажений формы напряжения — менее 8% в течение длительного времени и 12% — кратковременно

Оговорены в документе и типичные проблемы электроснабжения. Чаще всего нам приходится сталкиваться со следующими из них:

  • Полное пропадание напряжения в сети (отсутствие напряжения в сети на время более 40 секунд из-за нарушений в линиях подачи электроэнергии)
  • Проседания (кратковременное снижение напряжения в сети до величины менее 80% от номинального значения на время более 1 периода (1/50 секунды) являются следствием включения мощных нагрузок, внешне проявляется как мерцание ламп освещения) и всплески (кратковременные повышения напряжения в сети на величину более 110 % от номинального на время более 1 периода (1/50 секунды); появляются при отключении большой нагрузки, внешне проявляются как мерцание ламп освещения) напряжения разной продолжительности (характерно для больших городов)
  • Высокочастотный шум — радиочастотные помехи электромагнитного или другого происхождения, результат работы мощных высокочастотных устройств, коммуникационных устройств
  • Отклонение частоты за пределы допустимых значений
  • Высоковольтные выбросы — кратковременные импульсы напряжения величиной до 6000В и длительностью до 10 мс; появляются при грозах, как результат статического электричества, из-за искрения переключателей, внешних проявлений не имеют
  • Выбег частоты — изменение частоты на 3 и более Гц от номинального (50 Гц), появляются при нестабильной работе источника электроэнергии, внешне могут и не проявляться.

Все эти факторы могут привести к выходу из строя достаточно «тонкой» электроники, и, как это часто бывает, к потере данных. Впрочем, люди давно научились защищаться: фильтры сетевого напряжения, «гасящие» скачки, дизель-генераторы, обеспечивающие подачу электроэнергии системам при пропадании напряжения в «глобальном масштабе», наконец, источники бесперебойного питания — основной инструмент защиты персональных ПК, серверов, мини-АТС и др. Как раз о последней категории устройств и пойдет речь.
Классификация ИБП

«Разделять» ИБП можно по разным признакам, в частности, по мощности (или сфере применения) и по типу действия (архитектуре/устройству). Оба этих метода тесно связаны друг с другом. По мощности ИБП делятся на

  1. Источники бесперебойного питания малой мощности (с полной мощностью 300, 450, 700, 1000, 1500 ВА, до 3000 ВА — включая и on-line)
  2. Малой и средней мощности (c полной мощностью 3–5 кВА)
  3. Средней мощности (с полной мощностью 5–10 кВА)
  4. Большой мощности (с полной мощностью 10–1000 кВА)

Исходя из принципа действия устройств, в литературе в настоящее время используется два типа классификации источников бесперебойного питания. Согласно первому типу, ИБП делятся на две категории: on-line и off-line , которые, в свою очередь, делятся на резервные и линейно-интерактивные .

Согласно второму типу, ИБП делятся на три категории: резервные (off-line или standby), линейно-интерактивные (line-interactive) и ИБП с двойным преобразованием напряжения (on-line).

Мы будем пользоваться вторым типом классификации.

Рассмотрим для начала разницу типов ИБП. Источники резервного типа выполнены по схеме с коммутирующим устройством, которое в нормальном режиме работы обеспечивает подключение нагрузки непосредственно к внешней питающей сети, а в аварийном — переводит ее на питание от аккумуляторных батарей. Достоинством ИБП такого типа можно считать его простоту, недостатком — ненулевое время переключения на питание от аккумуляторов (около 4 мс).

Линейно-интерактивные ИБП выполнены по схеме с коммутирующим устройством, дополненной стабилизатором входного напряжения на основе автотрансформатора с переключаемыми обмотками. Основное преимущество таких устройств — защита нагрузки от повышенного или пониженного напряжения без перехода в аварийный режим. Недостатком таких устройств также является ненулевое (около 4 мс) время переключения на аккумуляторы.

ИБП с двойным преобразованием напряжения отличается тем, что в нем поступающее на вход переменное напряжение сначала преобразуется выпрямителем в постоянное, а затем — с помощью инвертора — снова в переменное. Аккумуляторная батарея постоянно подключена к выходу выпрямителя и входу инвертора и питает его в аварийном режиме. Таким образом, достигается достаточно высокая стабильность выходного напряжения независимо от колебаний напряжения на входе. Кроме того, эффективно подавляются помехи и возмущения, которыми изобилует питающая сеть.

Практически, ИБП данного класса при подключении к сети переменного тока ведут себя как линейная нагрузка. Плюсом данной конструкции можно считать нулевое время переключения на питание от аккумуляторов, минусом — снижение КПД за счет потерь при двукратном преобразовании напряжения.


Физика

Во всех справочниках по электротехнике различаются четыре вида мощности: мгновенная , активная , реактивная и полная . Мгновенная мощность вычисляется как произведение мгновенного значения напряжения и мгновенного значения тока для произвольно выбранного момента времени, то есть

Так как в цепи с сопротивлением r u=ir, то

Средняя за период мощность P рассматриваемой цепи равна постоянной слагающей мгновенной мощности

Среднюю за период мощность переменного тока называют активной . Единица активной мощности вольт-ампер называется ватт (Вт).

Соответственно и сопротивление r называют активным. Так как U=Ir, то


Обычно именно активную мощность понимают под потребляемой мощностью устройства.

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока и напряжения на синус угла сдвига фазы между ними.

Полная мощность — потребляемая нагрузкой суммарная мощность (учитываются как активная, так и реактивная ее составляющие). Вычисляется как произведение среднеквадратичных значений входного тока и напряжения. Единица измерения — ВА (вольт-ампер). Для синусоидального тока равна

Практически на любом электрическом приборе находится этикетка с указанием либо полной мощности устройства, либо активной мощности.
Тестирование

Основная цель тестирования — продемонстрировать поведение тестируемых ИБП в реальных условиях, дать представление о дополнительных характеристиках, которые не находят отражения в общей документации на устройства, на практике определить влияние различных факторов на работу ИБП и, возможно, помочь определиться с выбором того или иного источника бесперебойного питания.

Несмотря на то, что рекомендаций по выбору ИБП в настоящее время существует великое множество, в ходе тестирования мы рассчитываем, во-первых, рассмотреть ряд дополнительных параметров, которыми стоит поинтересоваться перед покупкой оборудования, во-вторых, по необходимости скорректировать набор выбранных методов и параметров тестирования и выработать базу для будущего анализа всего тракта питания систем.

Общий план проведения тестирования выглядит следующим образом:

  • Указание класса устройства
  • Указание заявленных производителем характеристик
  • Описание комплектности поставки (наличие руководства, дополнительных шнуров, ПО)
  • Краткое описание внешнего вида ИБП (функции, вынесенные на контрольную панель и перечень разъемов)
  • Тип аккумуляторов (с указанием емкости аккумуляторов, обслуживаемые/необслуживаемые, наименование, возможно — взаимозаменяемость, возможность подключения дополнительных аккумуляторных блоков)
  • «Энергетическая» составляющая тестов

В процессе тестирования планируется проверить следующие параметры:

  • Диапазон входного напряжения, при котором ИБП работает от сети, не переключаясь на аккумуляторы. Больший диапазон входного напряжения уменьшает количество переходов ИБП на батарею и увеличивает срок ее службы
  • Время переключения на питание от аккумулятора. Чем меньше время переключения, тем меньше риск выхода из строя нагрузки (устройства, подключенного через ИБП). Длительность и характер процесса переключения во многом определяют возможность нормального продолжения работы оборудования. Для компьютерной нагрузки допустимое время прерывания питания 20-40 мс.
  • Осциллограмма переключения на аккумулятор
  • Время переключения с аккумулятора на внешнее питание
  • Осциллограмма переключения с аккумулятора на внешнее питание
  • Время работы в автономном режиме. Этот параметр определяется исключительно емкостью батарей, установленных в ИБП, которая, в свою очередь, увеличивается при росте максимальной выходной мощности ИБП. Для обеспечения автономным питанием двух современных компьютеров SOHO типичной конфигурации в течение 15-20 мин, максимальная выходная мощность ИБП должна быть порядка 600-700 ВА.
  • Параметры выходного напряжения при работе от батарей
  • Форма импульса в начале разряда аккумулятора
  • Форма импульса в конце разряда аккумулятора
  • Диапазон выходного напряжения ИБП при изменении входного напряжения. Чем этот диапазон уже, тем меньше влияние изменения входного напряжения на питаемую нагрузку
  • Стабилизация выходного напряжения
  • Фильтрация выходного напряжения (если она есть)
  • Поведение ИБП при перегрузке на выходе
  • Поведение ИБП при пропадании нагрузки
  • Вычисление КПД ИБП. Определяется как отношение выходной мощности устройства к потребляемой мощности от источника питания
  • Коэффициент нелинейных искажений, характеризующий степень отличия формы напряжения или тока от синусоидальной
    • 0% — синусоида
    • 3% — искажения не заметны на глаз
    • 5% — искажения заметны глазом
    • до 21% — трапецеидальная или ступенчатая форма сигнала
    • 43% — сигнал имеет прямоугольную форму
Оборудование

При тестировании мы будем пользоваться не реальными рабочими станциями и серверами, а эквивалентными нагрузками, которые имеют стабильный характер потребления и коэффициент использования мощности, близкий к 1. В качестве основного оборудования, которое будет использоваться при проведении тестирований, в настоящее время рассматривается следующий комплект:

Библиография
  1. ГОСТ 721-77 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В
  2. ГОСТ 19431-84 Энергетика и электрификация. Термины и определения
  3. ГОСТ 21128-83 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения до 1000 В
  4. ГОСТ 30372-95 Совместимость технических средств электромагнитная. Термины и определения
  5. Теоретическая электротехника, изд. 9-е, исправленное, М.-Л., издательство "Энергия", 1965
  6. Рекламные материалы компании
  7. Интернет-ресурс

Источники бесперебойного питания типа Off-Line

Источники бесперебойного питания типа Off-Line стандартом определяются как пассивные, резервного действия (UPS -PSO). В нормальном режиме функционирования штатным питанием нагрузки является отфильтрованное напряжение первичной сети при допустимых отклонениях входного напряжения и частоты. В случаи, когда параметры входного напряжения выходят за значения настроенных диапазонов, включается инвертор источника бесперебойного питания, обеспечивающий непрерывность питания нагрузки. Инвертор питается от аккумуляторов.

Это наиболее простые ИБП (рисунок 1), а значит, и самые дешевые. Источник бесперебойного питания состоит из двух параллельных ветвей:
. фильтр-нагрузка;
. выпрямитель-батарея-инвертор-нагрузка.



Рис.1. Схем источника бесперебойного питания Stand-By типа

При нормальных характеристиках сети, напряжение в нагрузку поступает через фильтр, фильтрующий всевозможные помехи. Это, обычно, фильтр-ограничитель (surge suppressor), хотя может быть и фильтр-стабилизатор (line conditioner) либо их сочетание, а также статический переключатель.

Одновременно через выпрямитель подзаряжаются и аккумуляторы аккумуляторной батареи. При пропадании, завышении либо понижении входного напряжения, питание нагрузки электронным переключателем переключается на батарейное через инвертор (инвертор преобразует постоянное напряжение в переменное). Переключатель обеспечивает время переключения от 2 до 15 мс. Отметим, что пропадание электроэнергии в ходе этого времени не оказывает сколь-нибудь заметного влияния на компьютерные системы, которые спокойно переносят отключение питания на 10-20мс. Учитывая, что почти у всей современной аппаратуры блоки питания импульсные, переключение совершается незаметно для пользователя. Источники бесперебойного питания такого типа могут поддержать работу персонального компьютера в ходе 5-10 мин.

Основные недостатки ИБП Off-Line

Главными недостатками ИБП off-line считают:
. плохая работа источников питания этого типа в сетях с низким качеством электрической сети: плохая защита от провалов напряжения (sags ), превышений допустимого значения напряжения, изменений частоты и формы входного напряжения;
. невозможность своевременного восстановления емкости аккумуляторов при частых переключениях на батарейное питание;
. несинусоидальное выходное напряжение при питании от аккумуляторной батареи.

Источники бесперебойного питания типа Line-Interactive

В источниках бесперебойного питания линейно-интерактивного типа (Line -Interactive, иногда Ferroresonant) сочетаются преимущества типа On-line с надежностью и эффективностью резервных (standby ). В источниках бесперебойного питания этого типа в отличие от технологии Off-line в прямую цепь включен ступенчатый автоматический регулятор напряжения (booster ), построенный на основе автотрансформатора (трансформатор с переключающимися обмотками). В некоторых моделях применяется сетевой стабилизатор напряжения.

Инвертор связан с нагрузкой. При работе он питает нагрузку параллельно стабилизированному (conditioned ) переменному напряжению сети. Нагрузка подключается полностью лишь в том случае, когда входное напряжение электросети пропадает.



Рис.2. Схем источника бесперебойного питания Line-Interactive типа

Из-за такого взаимодействия ( «interaction ») со входным сетевым напряжением данная архитектура и получила свое название. В определенном диапазоне изменения сетевого напряжения, выходное напряжение поддерживается в заданных границах за счет переключения обмоток трансформатора либо стабилизатором. Инвертор как правило работает при низком напряжении, регулирует выходное напряжение и подзарядку аккумуляторов до тех пор, пока не потребуется его включение для полного питания нагрузки при перебоях в электросети. Линейно-интерактивные источники бесперебойного питания нашли наиболее широкое применение в системах защиты компьютерных сетей.

Трансформатор, сделанный по специальной так называемой ferro-технологии, сглаживает скачки напряжения, при этом источник бесперебойного питания реже переключается на работу от аккумуляторной батареи, и следовательно повышается срок службы батареи. Обычно, эти источники бесперебойного питания оборудованы совершенными фильтрами, обеспечивающими защиту от помех различного происхождения. Типовое время переключения в режим питания от аккумуляторов или обратно составляет 2 мс.

Конструктивно трансформатор на имеет несколько дополнительных отводов во вторичной обмотке (это может быть автотрансформатор с единственной обмоткой), переключением отводов трансформатора при изменениях входного напряжения управляет контроллер (микропроцессор), поддерживая напряжение на выходе в требуемом диапазоне. Итак, Line-Interactive источник бесперебойного питания работает по принципу управляемого ЛАТРа и действительно реже переключается на батарейное питание при скачках входного напряжения. В этой схеме зарядное устройство конструктивно совмещено с преобразователем.

Одним из преимуществ ИБП такого типа является широкий диапазон допустимых входных напряжений.

В некоторых линейно-интерактивных моделях есть шунтовая цепь между входом первичной электросети и нагрузкой, такие ИБП называются шунтовыми линейно-интерактивными ИБП (UPS -LIB, Reversible + Bypass). В шунтовом режиме питаемая нагрузка не защищается. При работе с источниками на основе ferro-технологий нужно иметь в виду:

Источники бесперебойного питания On-Line типа

Технология On-Line позволяет реализовать самый надежный тип источника бесперебойного питания. С выпрямителя (рисунок 3) напряжение сети поступает на преобразователь постоянного напряжения высокого уровня в низкое ПН1, а далее — на преобразователь постоянного напряжения в переменное выходное напряжение (ПН2). Преобразователь ПН2 — инвертор, питание на который поступает как от аккумуляторов, так и от сети через выпрямитель-преобразователь напряжения ПН1, подключенных параллельно:

. при нормальном входном переменном напряжении инвертор ПН2 питается от выпрямителя;
. при отклонениях в питающей электросети от нормы, входное напряжение для ПН2 снимается с аккумуляторной батареи.



Рис.3. Схем источника бесперебойного питания On-Line типа

В большинстве систем источников бесперебойного питания мощностью до 5 кВА вместо непрерывно подключенного аккумулятора, подключен резервный преобразователь постоянного тока (DC -DC converter), включающийся при сбоях сети и дублирующий шину постоянного тока от низковольтного аккумулятора.

Вывод: даже в случаи незначительных отклонениях параметров входного напряжения от нормы On-Line устройства обеспечивают на выходе номинальное напряжение в области ±1-3%. Присутствие обходной цепи (bypass ) позволяет подключать нагрузку прямо к силовой сети. Качество питания и надежность поставки электроэнергии, предоставляемое устройствами с архитектурой такого типа, существенно выше, чем у предыдущих.

Недостатки источников бесперебойного питания On-line типа: невысокий, по сравнению с ранее рассмотренными типами, КПД (85 -90%) из-за двойного преобразования (по отношению к Standby и Line-Interactive) и высокая цена. Однако, уровень защиты нагрузки и стабильность выходных параметров ИБП — разумный компромисс между безопасностью, КПД и ценой устройства. Потери в ИБП мощностью в 4000ВА не превышают 380Вт и могут быть несоизмеримыми с той задачей, которую решает подобный источник питания.

Новые модификации источников бесперебойного питания

Сейчас имеется несколько новых модификаций источников бесперебойного питания:
. by-pass;
. triple-conversion;
. ferrups.

Первая модификация (by -pass) как и на рисунке 3 представляет собой дополнительный канал передачи электроэнергии в нагрузку, его наличие позволяет обеспечить высокую надежность устройства. Переключение в режим On-line производится автоматически при отклонении параметров выходной сети от нормы либо же в аварийных условиях работы. Таким образом, этот режим способствует увеличению надежности устройства. Вторая модификация (triple -conversion) содержит корректор коэффициента мощности. В третьей модификации (ferrups ) применен феррорезонансный трансформатор, обеспечивающий высокие показатели надежности и широкий диапазон входных напряжений.

Новые подходы в построении источников бесперебойного питания основываются на использовании систем с резервируемым питанием, которые обладают более высокой надежностью выходной сети, так что неисправность одного из элементов не ведет к выходу из строя всей системы. Обычно, это модульные системы, сконструированные или по принципу повышения мощности нагрузки, или для повышения надежности системы, или используя оба принципа совместно. Простейшая система имеет в структуре источника бесперебойного питания вспомогательный модуль, « изолированный в горячем дежурном режиме». Имеется несколько вариантов технических решений таких бесперебойников.

Первый вариант заключается в применении автоматического переключателя (рисунок 4). Входы одного либо более источников питания подключены к единой сети, а с нагрузкой соединяются через автоматический переключатель. Информация о состоянии работы установок, управляющие команды поступают по каналу связи объединяющему ИБП.


Рис.4. Параллельная схема с использованием автоматического переключателя

Второй вариант содержит « распределитель нагрузки» (рисунок 5), равномерно распределяющий нагрузку между отдельными источниками системы.


Рис.5. Параллельная схема с использованием автоматического переключателя

Третий вариант осуществления параллельной структуры (рисунок 6) использует принцип двухуровневой системы. В этом способе один из модулей « ведущий» управляет распределением нагрузки между другими « ведомыми» модулями.



Рис.6. Параллельная схема на основе двухуровневой системы Master-Slave

Четвертый вариант, с резервируемой параллельной архитектурой, выглядит наиболее перспективным. В такой схеме (рисунок 7) резервируются не только модули, но и связи между ними, причем при необходимости любой модуль может выполнять функции ведущего. Лишь для такой схемы характерно наращивание мощности, отсутствие шунтовых цепей, при этом гарантируется непрерывная защита нагрузки при помощи ИБП.



Рис.7. Схема резервируемой параллельной системы

Основные технические характеристики источников бесперебойного питания

Форма питающего напряжения

Важное значение для нагрузки имеет именно эта характеристика источника бесперебойного питания. В режиме работы ИБП от аккумуляторных батарей на нагрузку может поступать выходное переменное напряжение близкое к прямоугольной форме (меандр), из-за сглаживающих свойств фильтров, аппроксимированная синусоида и чистая синусоида. Самая близкая к синусоиде форма выходного напряжения получается применением широтно-импульсной модуляции. Получение синусоиды в качестве питающего напряжения характерно лишь для ИБП On-line и некоторых источников питания Line-Interactive.

Мощность

Полная либо выходная мощность (output power). Обозначается буквой S, единица измерения — VA или Вольт-Амперы. Является геометрической суммой активной и реактивной мощностей. Параметр рассчитывается как произведение действующих (среднеквадратических) значений тока и напряжения. Её значение указывается изготовителем источника питания.

Активная потребляемая нагрузкой мощность. Обозначается буквой P, единица измерения — ватт (Вт). В случаи отсутствия реактивной составляющей в сети, совпадает с полной мощностью. Определяется как произведение полной мощности на косинус угла φ, где φ — угол сдвига фаз векторов линейных напряжения и тока, т.е. P = S . cos (φ). Типичное значение cos (φ) для персональных компьютеров около 0,6-0,7. Эта величина именуется коэффициентом мощности. Очевидно, что для выбора требуемой мощности для источника бесперебойного питания, надо мощность нагрузки в ваттах разделить на величину cos (φ).

Реактивная — обозначается буквой Q и рассчитывается как произведение полной мощности S на синус угла φ (Q = S . sin (φ)). Единица измерения — вольт-ампер реактивный (вар). Характеризует потери в питающих проводах за счет нагружающего их реактивного тока. При cos (φ) = 1 потери отсутствуют, вся мощность вырабатываемая источником питания поступает в нагрузку. Достигают этого за счет использования пассивных компенсирующих устройств или же активной коррекцией коэффициента мощности.

Диапазон входного питающего напряжения

Диапазон входного питающего напряжения (input voltage) — определяет пределы допустимых значений напряжения в сети, при которых источник бесперебойного питания еще способен поддерживать напряжение на выходе, не переключаясь на питание от аккумуляторов. Для некоторых моделей этот диапазон зависит от нагрузки. К примеру, при 100% нагрузке диапазон входных напряжений может составлять 15-20% от номинального, при 50% нагрузке — этот диапазон составляет 20-27% от номинального, а при 30% нагрузке — 40% номинального. От этого параметра зависит срок службы аккумуляторов, чем шире диапазон, тем дольше прослужат аккумуляторы при прочих равных условиях.

Частота входного напряжения

Частота входного напряжения (input frequency) — характеризует диапазон отклонения частоты электросети. При нормальных условиях эксплуатации отклонение частоты от номинального значения как правило не превосходит 1 Гц.

Коэффициент искажения формы выходного напряжения

Коэффициент искажения формы выходного напряжения (total harmonic distortion — THD) характеризует отклонение формы выходного напряжения от синусоиды, измеряется в процентах. Маленькие значения коэффициента соответствуют форме выходного напряжения, приближающейся к синусоидальной.

Время переключения режимов

Время переключения режимов (transfer time) характеризует инерционность источника бесперебойного питания, для разных источников составляет приблизительно до 2-15 мс.

load) характеризует устойчивость источника бесперебойного питания при перегрузках по мощности, измеряется в процентах по отношению к номинальной мощности. Определяет устойчивость ИБП к нестационарным перегрузкам.

Время автономной работы

Время автономной работы определяется емкостью аккумуляторной батареи и размером нагрузки. Для типовых источников бесперебойного питания небольшой мощности, питающих персональные компьютеры, оно составляет 5-10 мин. Это время рассчитано на то, чтобы пользователь мог закрыть все работающие приложения с сохранением информации и выключить ПК в нормальном режиме.

Крест-фактор

Крест-фактор (crest factor) — отношение пикового значения потребляемого тока к среднедействующему. Величина зависит от формы питающего напряжения.

Срок службы аккумуляторной батареи

Срок службы аккумуляторных батарей составляет 4-5 лет, но реальный сильно зависит от условий эксплуатации: частоты переключений в автономный режим, условий зарядки, окружающей среды.

Наличие холодного старта

Наличие холодного старта — это возможность включения источника бесперебойного питания при отсутствии напряжения в питающей сети. Такая функция полезна, когда необходимо срочно выполнить какие либо действия независимо от наличия напряжения в электросети.

Аккумуляторы ИБП

Общие сведения

Источником, энергия которого используется для питания нагрузки в критических режимах работы, служит аккумуляторная батарея. В источниках бесперебойного питания мощностью до 20 кВт как правило применяются герметичные свинцово-кальциевые аккумуляторы с электролитом суспензионного типа. В аккумуляторах такого типа электролит обездвижен, либо силикагелем либо скекловолокном, что делает их непротекаемыми. Это свойство электролита позволяет эксплуатировать аккумуляторы в любом положении, кроме того, они не нуждается в периодическом пополнении электролита и другом обслуживании.

Электроды произведены из свинцово-кальциевого сплава, обеспечивающего продолжительный срок службы и широкую область применения аккумуляторов, рабочий диапазон температур составляет от минус 20 до плюс 50°С (для некоторых типов аккумуляторов). Аккумуляторы не страдают так называемым « эффектом памяти», могут длительно храниться в заряженном состоянии (до года), при этом ток саморазрядки незначителен.

Конструкция аккумуляторов

Конструкция аккумуляторов традиционна — ударопрочный пластмассовый корпус поделен на секции — « банки». Наборы катодных и анодных пластин разделены прокладками — сепараторами из стекловолокна. Активная часть электролита — серная кислота. Крышка герметично соединена с корпусом, без возможности разобрать аккумулятор. В верхней части крышки размещены клапаны (по одному на каждую секцию), обеспечивающие выпуск газа в случае его избыточного образования в ходе работы, и пластинчатые выводы. Клапаны закрыты дополнительной съемной крышкой.

Хранение аккумуляторов

Продолжительность эксплуатации аккумуляторов составляет приблизительно 5 лет. При ежедневном использовании источника бесперебойного питания, собственные возможности заряда гарантируют эксплуатацию в ходе этого срока. При продолжительном неиспользовании аккумуляторы подвергаются саморазряду. Для аккумуляторов YUASA скорость саморазряда составляет приблизительно 3% в месяц при температуре окружающей среды около 20°С. Если в ходе длительного интервала времени аккумуляторы не заряжаются, то на отрицательных пластинах аккумулятора формируются сульфаты свинца. Это явление известно как « сульфатация». Сульфат свинца действует как изолятор, препятствуя приему заряда аккумулятором. Чем глубже произошла сулъфатация пластины, тем меньший заряд может принять аккумулятор.

Чтобы исключить необратимые последствия при хранении, надо заряд проводить через срок, соответствующий условиям температуры окружающей среды. С целью обеспечения оптимального срока использования, длительно хранящиеся аккумуляторы, должны периодически подзаряжаться.

Способы заряда аккумуляторов ИБП

Зарядка аккумуляторов является главной составляющей ее обслуживания. Срок использования аккумуляторов зависит от эффективности выбранного способа заряда. Имеются следующие способы заряда:
— зарядка при постоянном напряжении;
— зарядка при постоянной силе тока;
— двухступенчатая зарядка при постоянном напряжении.

Предпочтительным способом является зарядка при постоянном напряжении. В этом случае аккумуляторная батарея подключается к источнику энергии, зарядное напряжение которого поддерживается постоянным в ходе всего процесса заряда. В ходе заряда сила тока понижается и становится значительно меньше, чем при заряде способом постоянного тока, и в конце заряда опускается почти до нуля. При этом батарею заряжают до 90-95% ее номинальной емкости.

Выбор источника бесперебойного питания

Спектр типов источников бесперебойного питания, как средств защиты оборудования и компьютерных систем, достаточно широк. Вопрос выбора требуемого источника питания очень непрост. Чтобы решить вопрос выбора того или иного ИБП, надо попробовать проанализировать факторы, влияющие на условия работы источника питания.

Во-первых, надо попытаться оценить значимость питаемой системы. Вполне возможно, что для домашнего или офисного варианта будет достаточно источника бесперебойного питания Off-line либо Line-interactive типа. ИБП On-line типа больше подходит для серверного компьютера и прочих видов нагрузки, имеющих повышенные требования к качеству и надежности электропитания.

Во-вторых, необходимо оценить качество электросети: вероятность и частота отключения напряжения, наличие колебаний напряжения и различных помех.

В-третьих, нужно оценить мощность источника бесперебойного питания. Чтобы ориентировочно представить, какой мощности ИБП требуется, надо определить защищаемую аппаратуру и рассчитать для нее суммарное значение потребляемой мощности. Затем, полученные ватты нужно перевести в ВА, разделив на коэффициент мощности. Для компьютерного оборудования коэффициент мощности равен 0,5-0,6.

Производители не рекомендуют загружать источник бесперебойного питания на величину больше чем 80% от максимальной нагрузки. Надо отметить, что лазерные принтеры не рекомендуется подключать к источнику бесперебойного питания ввиду высокого энергопотребления нагревательного элемента.

Источник бесперебойного питания - важный элемент при построении сложных систем, которым необходима непрерывная работа и гарантия безопасности оборудования от возможных проблем в электросети. Сейчас на рынке представлено множество разнообразной продукции разных категорий цены, качества и географии производства. Определиться трудно, тем более если за плечами нет необходимого опыта. Финансы подсказывают, что подходить к вопросу выбора стоит с оглядкой на собственный бюджет. Поэтому, прежде чем вкладывать средства в приобретение источника бесперебойного питания, следует ответить на несколько важных вопросов:

  • Насколько ответственное оборудование вы собираетесь защищать?
  • Какое время автономной работы оборудования в случае пропадания напряжения будет оптимальным?

Чтобы ответить на поставленные выше вопросы, необходимо детально вникнуть в классы представленных сегодня на рынке источников бесперебойного питания. А также определиться с основными критериями, которые необходимо учесть, чтобы сделать взвешенный выбор.

Классы ИБП

Все разнообразие современных источников бесперебойного питания, представленное сегодня на рынке, можно разделить на несколько классов, отличающихся друг от друга схематикой, а также поведением как в режиме нормальной работы, так и работы от аккумуляторов.

Выделяют:

  • Резервные или (BackUp),
  • Линейно-интерактивные ИБП (),
  • ИБП с двойным преобразованием ( , double-conversion).

Самыми простыми и неприхотливыми считаются . При работе сети в нормальном режиме электричество поступает на вход ИБП и, проходя через него, подается на основную нагрузку. В случае же потерь и перепадов напряжения в сети, "бесперебойник" автоматически переключается на аккумулятор. Основные недостатки такой схемы заключаются в том, что переключение питания ИБП на аккумуляторы занимает от 4 до 10 миллисекунд. При работе же в режиме питания от аккумулятора, на выходе ИБП выдается не привычный для сети синус, а аппроксимированный синус.

Источник бесперебойного питания со встроенными аккумуляторами будет верным решением, когда при проблемах с напряжением в сети важно лишь корректное завершение работы оборудования, занимающее от 5 до 10 минут.

При необходимости большего времени работы оборудования, нужно рассчитать необходимый ток разряда батарей. Сделать это можно следующим образом:

Из всего вышесказанного становится ясно, что при выборе источника бесперебойного питания необходимо учесть множество как технических, так и чисто физических нюансов, определяющихся как конкретным месторасположением ИБП и оборудования подключаемого к нему, так и рядом других факторов.

Для облегчения расчетов при выборе ИБП, на компании НАГ есть удобный инструмент - , при помощи которого можно определить все необходимые параметры.

КПД - коэффициент полезного действия - одна из важнейших характеристик любого оборудования, и источники бесперебойного питания здесь не исключение. И КПД ИБП оказывает влияние не только на систему энергоснабжения.

От 94 к 96

Недавно стандартным значением КПД для ИБП многих производителей было 94%. Сегодня благодаря новым технологиям (в частности, IGBT-транзисторам) на рынке появились ИБП с КПД 96%.

Эко-режимы

Ещё один шаг, сделанный большинством производителей - разработка алгоритма работы ИБП с использованием эко-режима. Поэ эко-режимом понимается экономически-выгодный режим, при котором основные функциональные части ИБП (выпрямитель, инвертор) по сути отключены, а питание нагрузки осуществляется по линии контролируемого, а иногда и корректируемого байпаса.

Как результат, КПД повышается вплоть до 99%. Однако следует понимать, что КПД в этом случае носит ступенчатый характер. Дело в том, что эко-режим активируется лишь в случае удовлетворяющей всем требованиям внешней электросети. Если же какие-либо параметры выходят за рамки рекомендуемых, то, в зависимости от производителя, либо сразу активируется режим двойного преобразования, либо включаются в работу механизмы коррекции параметров электросети. При недостаточности их влияния ИБП также переходит в режим двойного преобразования.

Таким образом, в общем случае имеется три ступени КПД ИБП: максимальное значение в 99%, 97-98% в режиме коррекции и всё те же 96% в режиме двойного преобразования.

Влияние на кондиционирование

К слову, современные системы кондиционирования с плавным регулированием холодопроизводительности имеют повышенный КПД при малых нагрузках, поэтому повышение КПД ИБП повышает и КПД кондиционеров.

Реальный расчет

На практике это означает следующее. Сравним модели ИБП с КПД 94% и 96%, эксплуатируемых в одинаковых условиях с одинаковой загрузкой.

В случае КПД 94% мощность на входе в ИБП составит 1000 / 0.85 / 0.94 = 1251.5кВт. В случае КПД 96%: 1000 / 0.85 / 0.96 = 1225.5кВт.

Прирост КПД на 2% в абсолютной величине снижает подводимую к ИБП мощность на 2.21% (= 1 / 0.94 - 1 / 0.96).

Нагрузка на систему кондиционирования снижается с 6% от мощности ИБП до 4% от мощности ИБП, т.е. на треть. Если принять, что для отвода 3кВт тепла система кондиционирования потребляет 1кВт электроэнергии, то потребляемая кондиционерами мощность снизится с 2% от мощности ИБП до 1.33% от мощности ИБП, т.е. на 0.67%.

Общее снижение подводимой к ИБП мощности составит 2.21 + 0.67 = 2.88%.