2.1.1. Аналоговые телефонные сети

Аналоговые телефонные сети относятся к глобальным сетям с коммутацией каналов, которые создавались для предоставления общедоступных телефонных услуг населению. Аналоговые телефонные сети ориентированы на соединение, которое устанавливается до начала ведения разговоров (передачи голоса) между абонентами. Телефонная сеть образуется (коммутируется) с помощью коммутаторов автоматических телефонных станций.

Телефонные сети состоят из:

  • автоматических телефонных станций (АТС);
  • телефонных аппаратов;
  • магистральных линий связи (линий связи между АТС);
  • абонентских линий (линий, соединяющих телефонные аппараты с АТС).

Абонент имеет выделенную линию, которая соединяет его телефонный аппарат с АТС. Магистральные линии связи используются абонентами по очереди.

Аналоговые телефонные сети используются также и для передачи данных в качестве:

  • сетей доступа к сетям с коммутацией пакетов, например, подключения к Интернет (применяются как коммутируемые, так и выделенные телефонные линии);
  • магистралей пакетных сетей (в основном применяются выделенные телефонные линии).

Аналоговая телефонная сеть с коммутацией каналов предоставляет для пакетной сети услуги физического уровня, которая после коммутации является физическим каналом "точка-точка".

Обычная телефонная сеть или POTS (Plain Old Telephone Service – старый “плоский” телефонный сервис) обеспечивает пропускание голосового сигнала между абонентами с диапазоном частот до 3,1 кГц, что является вполне достаточным для нормального разговора. Для связи с абонентами используется двухпроводная линия, по которой сигналы обоих абонентов во время разговора идут одновременно во встречных направлениях.

Телефонная сеть состоит из множества станций, имеющих иерархические соединения между собой. Коммутаторы этих станций прокладывают путь между АТС вызывающего и вызываемого абонента под управлением информации, предоставляемой системой сигнализации. Магистральные линии связи между телефонными станциями должны обеспечивать возможность одновременной передачи большого количества информации (поддерживать большое количество соединений).

Выделять для каждого соединения отдельную магистральную линию нецелесообразно, и для более эффективного использования физических линий применяют:

  • метод частотного уплотнения каналов;
  • цифровые каналы и мультиплексирование цифровых потоков от множества абонентов.

Метод частотного уплотнения каналов (FDM – Frequency Division Multiplexing)

В этом случае по одному кабелю передается множество каналов, в которых низкочастотный голосовой сигнал модулирует сигнал высокочастотного генератора. Каждый канал имеет собственный генератор, и частоты этих генераторов разнесены друг от друга настолько, чтобы передавать сигналы в полосе до 3,1 кГц с нормальным уровнем разделения друг от друга.

Применение цифровых каналов для магистральных передач

Для этого аналоговый сигнал от абонентской линии на телефонной станции оцифровывается и далее в цифровом виде доставляется на телефонную станцию адресата. Там он обратно преобразовывается и передается в аналоговую абонентскую линию.

Для обеспечения двусторонней связи на телефонной станции каждое окончание абонентской линии имеет пару преобразователей – АЦП (аналого-цифровой) и ЦАП (цифро-аналоговый). Для голосовой связи со стандартной полосой пропускания (3,1 кГц) принята частота квантования 8 кГц. Приемлемый динамический диапазон (отношение максимального сигнала к минимальному) обеспечивается при 8-битном преобразовании.

Итого получается, что каждый телефонный канал требует скорости передачи данных в 64 кбит/с (8 бит х 8 кГц).

Часто для передачи сигнала ограничиваются и 7-битными отсчетами, а восьмой (младший) бит используется для целей сигнализации. В таком случае чисто голосовой поток сокращается до 56 кбит/с.

Для эффективного использования линий магистрали цифровые потоки от множества абонентов на телефонных станциях мультиплексируются в каналы различной емкости, соединяющие телефонные станции между собой. На другом конце канала производится демультиплексирование – выделение требуемого потока из канала.

Мультиплексирование и демультиплексирование, естественно, производится на обоих концах одновременно, поскольку телефонная связь двусторонняя. Мультиплексирование осуществляется с помощью разделения во времени (TDM – Time Division Multiplexing).

В магистральном канале информация организована в виде непрерывной последовательности кадров. Каждому абонентскому каналу в каждом кадре отводится интервал времени, в течение которого передаются данные этого канала.

Таким образом, в современных аналоговых телефонных линиях по абонентской линии связи передаются аналоговые сигналы, а в магистральных линиях передаются цифровые сигналы.

Модемы для коммутируемых аналоговых телефонных линий

Телефонные сети общего пользования, кроме передачи голоса, позволяют передавать цифровые данные при помощи модемов.

Модем (модулятор-демодулятор) служит для передачи данных на большие расстояния с использованием выделенных и коммутируемых телефонных линий.

Модулятор поступающую от компьютера двоичную информацию преобразует в аналоговые сигналы с частотной или фазовой модуляцией, спектр которых соответствует полосе пропускания обычных голосовых телефонных линий. Демодулятор из этого сигнала извлекает закодированную двоичную информацию и передает ее в принимающий компьютер.

Факс-модем (fax-modem) позволяет передавать и принимать факсимильные изображения, совместимые с обычными факс-машинами.

Модемы для выделенных телефонных линий

Выделенные физические линии имеют полосу пропускания гораздо более широкую, чем коммутируемые. Для них выпускаются специальные модемы, обеспечивающие передачу данных со скоростями до 2048 кбит/с и на значительные расстояния.

Технологии xDSL

Технологии xDSL основаны на превращении абонентской линии обычной телефонной сети из аналоговой в цифровую xDSL (Digital Subscriber Line). Суть данной технологии заключается в том, что на обоих концах абонентской линии – на АТС и у абонента – устанавливаются разделительные фильтры (splitter).

Низкочастотная (до 3,5 кГц) составляющая сигнала заводится на обычное телефонное оборудование (порт АТС и телефонный аппарат у абонента), а высокочастотная (выше 4 кГц) используется для передачи данных с помощью xDSL-модемов.

Технологии xDSL позволяют одновременно использовать одну и ту же телефонную линию и для передачи данных, и для передачи голоса (телефонных переговоров), чего не позволяют обычные модемы для коммутируемых линий.

Обычно нам нет дела до того, как работает телефонная линия (но только не тогда, когда приходится кричать изо всех сил в телефонную трубку: "Повторите пожалуйста, ничего не слышно!").

Телефонные компании предоставляют клиенту множество самых разных услуг. В прейскурантах этих услуг разобраться не так просто - что, собственно, предлагается, и сколько за какую услугу следует платить. В этой статье мы ни словом не обмолвимся о ценах, однако попытаемся выяснить, в чем различие между наиболее часто предлагаемыми продуктами и услугами в области телефонной связи.

АНАЛОГОВЫЕ ЛИНИИ, ЦИФРОВЫЕ ЛИНИИ

Во-первых, линии бывают аналоговые и цифровые. Аналоговый сигнал меняется непрерывным образом; он всегда имеет определенное значение, представляющее, например, громкость и высоту передаваемого голоса или цвет и яркость определенного участка изображения. Цифровые сигналы имеют только дискретные значения. Как правило, сигнал либо включен, либо выключен, либо он есть, либо его нет. Иными словами, его значение равно или 1 или 0.

Аналоговые телефонные линии используются в телефонии с незапамятных времен. Даже телефоны пятидесятилетней давности, скорее всего, удастся подключить к абонентскому шлейфу - линии между домашней телефонной розеткой и центральной телефонной станцией. (Центральная телефонная станция - это не сверкающий небоскреб в центре города; длина абонентского шлейфа в среднем не превышает 2,5 миль (четырех километров), так что "центральная телефонная станция", как правило, помещается в каком-нибудь невзрачном здании неподалеку.)

Во время телефонного разговора встроенный в телефонную трубку микрофон преобразует речь в аналоговый сигнал, передаваемый на центральную телефонную станцию, откуда он попадает либо на другой абонентский шлейф, либо на другие коммутационные устройства, если вызываемый номер находится вне зоны действия данной станции. При наборе номера телефонный аппарат генерирует передаваемые по тому же основному каналу сигналы (in-band signals), указывающие, кому предназначен данный вызов.

За время своего существования телефонные компании накопили большой опыт в передаче речи. Установлено, что для выполнения этой задачи в основном достаточен диапазон частот от 300 до 3100 Гц. Напомним, что аудиосистемы класса hi-fi способны воспроизводить звук без искажений в частотном диапазоне 20-20000 Гц, а значит, телефонного диапазона хватает обычно только для того, чтобы абонент мог узнать звонящего по голосу (для других применений этот диапазон с большой вероятностью окажется чересчур узок - для передачи музыки, например, телефонная связь совершенно не годится). Плавный спад амплитудно-частотной характеристики на высоких и низких частотах телефонные компании обеспечивают с помощью аналогового телефонного канала 4000 Гц.

Центральная телефонная станция, как правило, оцифровывает сигнал, предназначенный для дальнейшей передачи по телефонной сети. За исключением Джилбет Каунти (шт. Арканзас) и Рэт Форк (шт. Вайоминг), во всех американских телефонных сетях сигнал между центральными станциями передается в цифровом виде. Хотя во многих компаниях используются цифровые учрежденческие АТС и средства передачи данных, а все средства ISDN основаны на цифровой кодировке, абонентские шлейфы по-прежнему остаются "последним оплотом" аналоговой связи. Объясняется это тем, что большинство телефонов в частных домах не имеют средств оцифровки сигнала и не могут работать с линиями пропускной способностью свыше 4000 Гц.

НА ЧТО ХВАТАЕТ 4000 ГЦ?

Модем - это устройство, преобразующее цифровые сигналы компьютера в аналоговые сигналы с частотами, в пределах полосы пропускания телефонной линии. Максимальная пропускная способность канала напрямую связана с полосой пропускания. Точнее, величина пропускной способности (в битах/сек) определяется полосой пропускания и допуском на отношение сигнал/шум. В настоящее время максимальная пропускная способность модемов - 33,6 Кбит/с - уже близка к этому пределу. Пользователи модемов с пропускной способностью 28,8 Кбит/с хорошо знают, что зашумленные аналоговые линии редко обеспечивают их полную пропускную способность, которая часто оказывается куда ниже. Сжатие, кэширование и прочие увертки помогают несколько выправить ситуацию, и тем не менее мы скорее доживем до изобретения вечного двигателя, чем до появления модемов с пропускной способностью 50 или хотя бы 40 Кбит/с на обычных аналоговых линиях.

Телефонные компании решают обратную задачу - оцифровывают аналоговый сигнал. Для передачи получающегося цифрового сигнала используются каналы пропускной способностью 64 Кбит/с (это - мировой стандарт). Такой канал, именуемый DS0 (digital signal, нулевой уровень), является базовым кирпичиком, из которого строятся все прочие телефонные линии. Например, можно объединить (правильный термин - уплотнить) 24 канала DS0 в канал DS1. Арендуя линию T-1, пользователь фактически получает канал DS1. Подсчитывая суммарную пропускную способность DS1, надо помнить, что после каждых 192 информационных бит (то есть 8000 раз в секунду) передается один бит синхронизации: всего получается 1,544 Мбит/с (64000 умножить на 24 плюс 8000).

ВЫДЕЛЕННЫЕ ЛИНИИ, КОММУТИРУЕМЫЕ ЛИНИИ

Помимо линии Т-1 клиент может арендовать выделенные линии или пользоваться обычными коммутирующими линиями. Арендуя у телефонной компании канал T-1 или низкоскоростную линию передачи данных, например цифровую линию dataphone (dataphone digital service, DDS), абонент фактически берет напрокат прямое соединение и в результате становится единственным пользователем канала с пропускной способностью 1,544 Мбит/с (T-1) или 56 Кбит/с (низкоскоростная линия).

Хотя технология frame relay и предполагает коммутацию индивидуальных кадров, соответствующие услуги предлагаются пользователю в виде виртуальных каналов связи между фиксированными конечными точками. С точки зрения архитектуры сети, frame relay следует рассматривать, скорее, как выделенную, нежели как коммутируемую линию; немаловажен тот факт, что цена такой услуги при той же пропускной способности существенно ниже.

Коммутационные услуги (примером их может служить обслуживание обычного квартирного телефона) - это услуги, приобретаемые у телефонной компании. Абоненту по требованию предоставляется осуществляемое с помощью сети коммутаторов общего пользования соединение с любым узлом телефонной сети. В отличие от ситуации с выделенными линиями, плата в этом случае взимается за время соединения или реальный объем трафика и зависит большей частью от частоты и объема пользования сетью. Коммутационные услуги цифровой связи могут предоставляться на основе протоколов X.25, Switched 56, ISDN Basic Rate Interface (BRI), ISDN Primary Rate Interface (PRI), Switched Multimegabit Data Service (SMDS) и ATM. Некоторые организации, например университеты, железные дороги или муниципальные организации, создают частные сети с использованием собственных коммутаторов и арендованных, а порой даже своих собственных линий.

Если линия, полученная от телефонной компании, цифровая, то для обмена данными между телефонной сетью и оконечным оборудованием (этим термином телефонные компании обозначают такое оборудование, как компьютеры, факсимильные аппараты, видеотелефоны и цифровые телефонные аппараты) не требуется выполнять преобразование цифровых сигналов в аналоговые, а следовательно, необходимость в модеме отпадает. Тем не менее и в этом случае пользование телефонной сетью накладывает определенные требования на абонента. В частности, следует обеспечивать корректную концевую заделку абонентского шлейфа, правильную передачу трафика и поддержку диагностики, выполняемой телефонной компанией.

Линия, поддерживающая протокол ISDN BRI, должна быть подсоединена к устройству под названием NT1 (network termination 1). Помимо концевой заделки линии и поддержки диагностических процедур устройство NT1 осуществляет согласование двухпроводного абонентского шлейфа с четырехпроводной системой цифрового оконечного оборудования. При использовании арендованных цифровых линий T-1 или DDS, а также услуг цифровой связи в качестве нагрузки линии следует использовать модуль обслуживания канала (channel service unit, CSU). CSU работает как терминатор, обеспечивает корректную нагрузку линии и отрабатывает команды диагностики. Оконечное оборудование, имеющееся у клиента, взаимодействует с модулем обслуживания данных (data service unit, DSU), который преобразует цифровые сигналы к стандартному виду и передает их на CSU. Конструктивно CSU и DSU часто объединяются в один модуль под названием CSU/DSU. DSU можно встроить в маршрутизатор или мультиплексор. Таким образом, и в этом случае (хотя модемы здесь не нужны) потребуется установка определенных интерфейсных устройств.

НОСИТЕЛИ ДЛЯ ТЕЛЕФОННОЙ СВЯЗИ

Большинство аналоговых абонентских шлейфов лишь при очень благоприятных условиях могут обеспечить пропускную способность в 33,6 Кбит/с. С другой стороны, та же самая витая пара, соединяющая офис с центральной телефонной станцией, вполне может использоваться для работы с ISDN BRI, что дает пропускную способность по данным 128 Кбит/с и еще 16 Кбит/с для управления и настройки. В чем тут дело? Сигнал, передаваемый по аналоговым телефонным лииниям, подвергается фильтрации для подавления всех частот свыше 4 КГц. При использовании цифровых линий такой фильтрации не требуется, поэтому полоса пропускания витой пары оказывается существенно шире, а следовательно, повышается и пропускная способность.

Арендуемые линии с пропускной способностью 56 и 64 Кбит/с представляют собой двухпроводные или четырехпроводные цифровые линии (в последнем случае одна пара используется для передачи, а другая - для приема). Эти же линии пригодны в качестве носителя для предоставления услуг цифровой связи, например frame relay или Switched 56. В качестве носителя для T-1, а также ISDN PRI и frame relay часто применяются четырехпроводные линии или даже оптические кабели. Линии T-3 иногда представляют собой коаксиальный кабель, но чаще они все-таки выполняются на основе оптического.

Хотя ISDN по-прежнему и привлекает самое широкое внимание как средство высокоскоростной передачи сигнала на большие расстояния, в последнее время появились более новые средства связи для "последней мили" (т.е. абонентского шлейфа). Компании PairGain и AT&T Paradyne предлагают продукты на базе разработанной компанией Bellcore технологии высокоскоростного цифрового абонентского шлейфа (high bit-rate digital subscriber loop, HDSL). Данные продукты позволяют уравнять возможности всех имеющихся абонентских шлейфов; установив устройства HDSL на обоих концах линии, можно получить пропускную способность DS1 (1,544 Мбит/с) практически на всех существующих абонентских шлейфах. (HDSL длиной до 3,7 км может использоваться на абонентских шлейфах без повторителей в случае стандартных проводов 24 калибра. Для работы обычных линий T-1 необходимо ставить повторители через каждые километр-полтора). Альтернативой HDSL в достижении пропускной способности DS1 на "последней миле" является либо использование оптического кабеля (что весьма накладно), либо установка нескольких повторителей на каждой линии (это не так дорого, как оптоволоконная техника, но все равно недешево). Кроме того, в данном случае существенно возрастают расходы телефонной компании, а следовательно и клиента, на поддержание линии в рабочем состоянии.

Но даже и HDSL - не последнее слово техники в области увеличения пропускной способности на "последней миле". Ожидается, что наследник HDSL, технология асимметричного цифрового абонентского шлейфа (asymmetrical digital subscriber line, ASDL), сможет обеспечить пропускную способность 6 Мбит/с в одном направлении; пропускная способность другого существенно ниже - что-нибудь около 64 Кбит/с. В идеале или, как минимум, при отсутствии чьей-либо монополии - если считать, что стоимость услуги для клиента примерно соответствует ее себестоимости для телефонной компании - большая доля клиентов могла бы пользоваться ISDN PRI (или другими услугами на базе T-1) по цене, сравнимой с теперешней ценой ISDN BRI.

Однако сегодня сторонникам ISDN, скорее всего, беспокоиться не о чем; в большинстве случаев телефонные компании предпочтут увеличить пропускную способность линий и положить всю прибыль себе в карман без снижения стоимости услуг для клиента. Вовсе не очевидно, что тарифы на услуги должны быть основаны на здравом смысле.

Таблица 1. Типы телефонных услуг

Тип линии

Услуга

Вид коммутации

Носитель абонентского шлейфа

Аналоговая линия

Коммутация линий

Двухпроводная витая пара

DS0 (64 Кбит/с)

DDS (арендуемая линия)

Выделенная линия

PVC с коммутацией

Двух- или четырехпроводная витая пара

Коммутация

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двухпроводная витая пара

Несколько DS0

(от 64 Кбит/с до

1536 Мбит/с с

Шагом 64 Кбит/с)

Выделенная линия

Двух- или четырехпроводная витая пара

PVC с коммутацией

Двух- или четырехпроводная витая пара

(1544 Мбит/с)

(24 линии DS0)

Арендуемая линия T-1

Выделенная линия

PVC с коммутацией

Четырехпроводная витая пара или оптоволокно

Коммутация пакетов

Четырехпроводная витая пара или оптоволокно

Коммутация линий

Четырехпроводная витая пара или оптоволокно

(44736 Мбит/с)

(28 линий DS1,

672 линии DS0)

Сотовая коммутация

Коммутация пакетов

Коаксиальный кабель или оптоволокно

Со Стивом Штайнке можно связаться через Internet по адресу:

Практически все электрические сигналы, отображающие реальные сообщения содержат бесконечный спектр частот. Для неискажённой передачи таких сигналов потребовался бы канал с бесконечной полосой пропускания. С другой стороны, потеря на приёме хотя бы одной составляющей спектра приводит к искажению временной формы сигнала. Поэтому ставится задача передавать сигнал в ограниченной полосе пропускания канала таким образом, чтобы искажения сигнала удовлетворяли требованиям и качеству передачи информации. Таким образом, полоса частот – это ограниченный (исходя из технико-экономический соображений и требований к качеству передачи) спектр сигнала.

Ширина полосы частот ΔF определяется разностью между верхней F В и нижней F Н частотами в спектре сообщения, с учётом его ограничения. Так, для периодической последовательности прямоугольных импульсов полоса сигнала ориентировочно может быть найдена из выражения:

где t n – длительность импульса.

1.Первичный телефонный сигнал (речевое сообщение), называемый также абонентским, является нестационарным случайным процессом с полосой частот от 80 до 12 000 Гц. Разборчивость речи определяется формантами (усиленные области спектра частот), большинство которых расположено в полосе 300 … 3400 Гц. Поэтому по рекомендации Международного консультативного комитета по телефонии и телеграфии (МККТТ) для телефонной передачи принята эффективно передаваемая полоса частот 300 … 3400 Гц. Такой сигнал называется сигналом тональной частоты (ТЧ). При этом качество передаваемых сигналов получается достаточно высоким – слоговая разборчивость составляет около 90%, а разборчивость фраз – 99% .

2.Сигналы звукового вещания . Источниками звука при передаче программ вещания являются музыкальные инструменты или голос человека. Спектр звукового сигнала занимает полосу частот 20…20000 Гц.

Для достаточно высокого качества (каналы вещания первого класса) полоса частот ∆F C должна составлять 50…10000 Гц, для безукоризненного воспроизводства программ вещания (каналы высшего класса) – 30…15000 Гц., второго класса – 100…6800 Гц .

3. В вещательном телевидении принят метод поочередного преобразования каждого элемента изображения в электрический сигнал с последующей передачей этого сигнала по одному каналу связи. Для реализации такого принципа на передающей стороне применяются специальные электронно-лучевые трубки, преобразующие оптическое изображение передаваемого объекта в развернутый во времени электрический видеосигнал.

Рисунок 2.6 – Конструкция передающей трубки

В качестве примера на рисунке 2.6 представлен в упрощенном виде один из вариантов передающей трубки. Внутри стеклянной колбы, находящейся под высоким вакуумом, расположены полупрозрачный фотокатод (мишень) и электронный прожектор (ЭП). Снаружи на горловину трубки надета отклоняющая система (ОС). Прожектор формирует тонкий электронный луч, который под воздействием ускоряющего поля направляется к мишени. При помощи отклоняющей системы луч перемещается слева направо (по строкам) и сверху вниз (по кадру), обегая всю поверхность мишени. Совокупность всех (N) строк называется растром. На мишень трубки, покрытую светочувствительным слоем, проецируется изображение. В результате каждый элементарный участок мишени приобретает электрический заряд. Образуется так называемый потенциальный рельеф. Электронный луч, взаимодействуя с каждым участком (точкой) потенциального рельефа, как бы стирает (нейтрализует) ее потенциал. Ток, который течет через сопротивление нагрузки R н, будет зависеть от освещенности участка мишени, на который попадает электронный луч, и на нагрузке выделится видеосигнал U с (рисунок 2.7). Напряжение видеосигнала будет изменяться от уровня "черного", соответствующего наиболее темным участкам передаваемого изображения, до уровня "белого", соответствующего наиболее светлым участкам изображения .



Рисунок 2.7 – Форма телевизионного сигнала на временном интервале, где отсутствуют кадровые импульсы.

Если уровню "белого" будет соответствовать минимальное значение сигнала, а уровню "черного" – максимальное, то видеосигнал будет негативным (негативной полярности). Характер видеосигнала зависит от конструкции и принципа действия передающей трубки.

Телевизионный сигнал является импульсным однополярным (так как он является функцией яркости, которая не может быть разнополярной) сигналом. Он имеет сложную форму, и его можно представить в виде суммы постоянной и гармонических составляющих колебаний различных частот.
Уровень постоянной составляющей характеризует среднюю яркость передаваемого изображения. При передаче подвижных изображений величина постоянной составляющей будет непрерывно меняться в соответствии с освещенностью. Эти изменения происходят с очень низкими частотами (0-3 Гц). С помощью нижних частот спектра видеосигнала воспроизводятся крупные детали изображения .

Телевидение, равно как и световое кино, стало возможным благодаря инерционности зрения. Нервные окончания сетчатки глаза продолжают ещё какое-то время оставаться возбуждёнными после прекращения действия светового раздражителя. При частоте смены кадров F к ≥ 50 Гц глаз не замечает прерывистости смены изображения. В телевидении время считывания всех N строк (время кадра – T к) выбирается равным T к = с. С целью уменьшения мерцания изображения используется чересстрочная развертка. Вначале за время полукадра, равное Т п/к = = с, считываются поочередно все нечетные строки, затем, за такое же время – все четные строки. Частота спектра видеосигнала получится при передаче изображения, представляющего собой сочетание светлой и темной половины растра (рисунок 2.8). Сигнал представляет собой импульсы близкие по форме к прямоугольной. Минимальная частота этого сигнала при чересстрочной развертке частоте полей, т.е.

Рисунок 2.8 – К определению минимальной частоты спектра частот телевизионного сигнала

С помощью верхних частот передаются наиболее мелкие детали изображения. Такое изображение можно представить в виде чередующихся по яркости мелких черных и белых квадратов со сторонами, равными диаметру луча (рисунок 2.9, а), расположенными вдоль строки. Такое изображение будет содержать максимальное количество элементов изображения.


Рисунок 2.9 – К определению максимальной частоты видеосигнала

Стандарт предусматривает разложение изображения в кадре на N = 625 строк. Время прочерчивания одной строки (рис. 2.9, б) будет равно . Меняющийся по строке сигнал получится, когда чередуются чёрные и белые квадратики. Минимальный период сигнала будет равен времени считывания пары квадратов:

где n пар – число пар квадратов в строке.

Число квадратов (n) в строке будет равно:

где – формат кадра (смотри рисунок 2.2.4, а),

b – ширина, h – высота поля кадра.

Тогда ; (2.10)

Формат кадра принимается равным к=4/3. Тогда верхняя частота сигнала F в будет равна:

При передаче 25 кадров в секунду с 625 строками в каждом номинальное значение частоты разложения по строкам (частота строк) равно 15.625 кГц. Верхняя частота телевизионного сигнала будет равна 6.5 МГц.

Согласно принятому в нашей стране стандарту напряжение полного видеосигнала U ТВ, состоящего из импульсов синхронизации U C , сигнала яркости и гасящих импульсов U P составляет U ТВ = U P + U C =1В. При этом U C = 0.3 U ТВ, а U P =0.7 U ТВ. Как видно из рисунка 2.10 сигнал звукового сопровождения располагается выше по спектру (fн ЗВ = 8 МГц) видеосигнала. Обычно сигнал видео передаётся посредством амплитудной модуляции (АМ), а сигнал звука – частотной (ЧМ) .

Иногда, в целях экономии полосы канала верхняя частота видеосигнала ограничивается значением Fв = 6.0 МГц, а несущая звука передаётся на частоте fн зв = 6.5 МГц.


Рисунок 2.10 – Размещение спектров сигналов изображения и звука в радиоканале телевизионного вещания.

Практикум (подобные задачи входят в экзаменационные билеты)

Задача №1: Найти частоту следования импульсов передаваемого сигнала и полосу пропускания сигнала, если на экране телевизора наблюдается 5 пар черно-белых чередующихся вертикальных полос

Задача №2: Найти частоту следования импульсов передаваемого сигнала и полосу пропускания сигнала, если на экране телевизора наблюдается 10 пар черно-белых чередующихся горизонтальных полос

При решении задачи №1 необходимо использовать известную величину длительности одной строки стандартного ТВ сигнала. За это время произойдет смена 5-ти импульсов соответствующих уровню черного и 5-ти импульсов соответствующих уровню белого (можно вычислить их длительность). Таким образом, можно определить частоту смены импульсов и полосу пропускания сигнала.

При решении задачи №2 исходите из общего числа строк в кадре, определите, сколько строк приходится на одну горизонтальную полосу, учтите, что развертка осуществляется чересстрочно. Так вы определите длительность импульса соответствующего уровню черного или белого. Далее как в задаче№1

При оформлении итоговой работы для удобства используйте графическое изображение сигналов и спектров.

4. Факсимильные сигналы. Факсимильная (фототелеграфная) связь – это передача неподвижных изображений (рисунков, чертежей, фотографий, текстов, газетных полос и так далее). Устройство преобразования факсимильного сообщения (изображения) преобразовывает световой поток, отражаемый от изображения, в электрический сигнал (Рисунок 2.2.6)


Рисунок 2.11 - Функциональная схема факсимильной связи

Где 1 – канал факсимильной связи; 2 – привод, синхронизирующие и фазирующие устройства; 3 – передающий барабан, на который помещается оригинал передаваемого изображения на бумажном носителе; ФЭП – фотоэлектронный преобразователь отражённого светового потока в электрический сигнал; ОС – оптическая система для формирования светового луча .

При передаче чередующихся по яркости элементов сигнал приобретает вид импульсной последовательности. Частоту следования импульсов в последовательности называют частотой рисунка. Максимального значения частота рисунка, Гц, достигает при передаче изображения, элементы и разделяющие их промежутки которого равны размерам развертывающего луча:

F рисmax = 1/(2τ u) (2.12)

где τ u – длительность импульса, равная длительности передачи элемента изображения, которую можно определить через параметры развертывающего устройства.

Так, если π·D – длина строки, а S – шаг развертки (диаметр развертывающего луча), то в строке π·D/S элементов. При N оборотах в минуту барабана, имеющего диаметр D, время передачи элемента изображения, измеряемое в секундах:

Минимальная частота рисунка (при изменении по строке), Гц, будет при развертке изображения, содержащего по длине строки черную и белую полосы, равные по ширине половине длины строки. При этом

F puс min = N/60, (2.14)

Для выполнения удовлетворительной по качеству фототелеграфной связи достаточно передавать частоты от F рис min до F рис max . Международный консультативный комитет по телеграфии и телефонии рекомендует для факсимильных аппаратов N = 120, 90 и 60 об/мин; S = 0.15 мм; D = 70 мм. Из (2.13) и (2.14) следует, что при N = 120 F рис max = 1466 Гц; F рис min = 2 Гц; при N =60 F рис max = 733 Гц; F рис min = 1 Гц; Динамический диапазон факсимильного сигнала составляет 25 дБ .

Телеграфные сигналы и сигналы передачи данных. Сообщения и сигналы телеграфии и передачи данных относятся к дискретным.

Устройства преобразования телеграфных сообщений и данных представляют каждый знак сообщения (букву, цифру) в виде определённой комбинации импульсов и пауз одинаковой длительности . Импульс соответствует наличию тока на выходе устройства преобразования, пауза – отсутствию тока.

Для передачи данных используют более сложные коды, которые позволяют обнаруживать и исправлять ошибки в принятой комбинации импульсов, возникающие от действия помех .

Устройства преобразования сигналов телеграфии и передачи данных в сообщения по принятым комбинациям импульсов и пауз восстанавливают в соответствии с таблицей кода знаки сообщения и выдают их на печатающее устройство или экран дисплея.

Чем меньше длительность импульсов, отображающих сообщения, тем больше их будет передано в единицу времени. Величина, обратная длительности импульса, называется скоростью телеграфирования: В = 1/τ и, где τ и – длительность импульса, с. Единицу скорости телеграфирования назвали бодом. При длительности импульса τ и = 1 с скорость В = 1 Бод. В телеграфии используются импульсы длительностью 0.02 с, что соответствует стандартной скорости телеграфирования 50 Бод. Скорости передачи данных существенно выше (200, 600, 1200 Бод и более).

Сигналы телеграфии и передачи данных обычно имеют вид последовательностей прямоугольных импульсов (рисунок 2.4, а).

При передаче двоичных сигналов достаточно зафиксировать только знак импульса при двуполярном сигнале либо наличие или отсутствие – при однополярном сигнале. Импульсы можно уверенно зафиксировать, если для их передачи используется ширина полосы частот, численно равная скорости передачи в бодах. Для стандартной скорости телеграфирования 50 Бод ширина спектра телеграфного сигнала составит 50 Гц. При скорости 2400 Бод (среднескоростная система передачи данных) ширина спектра сигнала равна примерно 2400 Гц.

5. Средняя мощность сообщений Р СР определяется путем усреднения результатов измерений за большой промежуток времени.

Средняя мощность, которую развивает случайный сигнал s(t) на резисторе сопротивлением 1 Ом:

Мощность, заключённую в конечной полосе частот между ω 1 и ω 2 , определяют интегрированием функции G(ω) β соответствующих пределах:

Функция G(ω) οредставляет собой спектральную плотность средней мощности процесса, то есть мощность, заключённую в бесконечно малой полосе частот.

Для удобства расчетов мощность обычно дается в относительных единицах, выраженных в логарифмической форме (децибелах, дБ). В этом случае уровень мощности:

Если эталонная мощность Р Э =1 мВт, то р х называют абсолютным уровнем и выражают в дБм. С учетом этого абсолютный уровень средней мощности:

Пиковая мощность р пик (ε %) – ύто такое значение мощности сообщения, которое может превышаться в течение ε % времени.

Пик-фактор сигнала определяется отношением пиковой мощности к средней мощности сообщения, дБ,

Из последнего выражения, поделив числитель и знаменатель на Р Э, с учетом (2.17) и (2.19) определим пик-фактор как разность абсолютных уровней пиковой и средней мощностей:

Под динамическим диапазоном D (ε%) понимают отношение пиковой мощности к минимальной мощности сообщения Р min . Динамический диапазон, как и пик-фактор, принято оценивать в дБ:

Средняя мощность сигнала тональной частоты, измеренная в час наибольшей нагрузки (ЧНН), с учётом сигналов управления – набора номера, вызова и так далее – составляет 32 мкВт, что соответствует уровню (по сравнению с 1 мВт) p ср = –15 дБм

Максимальная мощность телефонного сигнала, вероятность превышения которой пренебрежимо мала, равна 2220 мкВт (что соответствует уровню +3.5 дБм); минимальная мощность сигнала, который еще слышен на фоне шумов, принята равной 220000 пВт (1 пВт = 10 -12 мВт), что соответствует уровню – 36. 5 дБм.

Средняя мощность Р СР сигнала вещания (измеренная в точке с нулевым относительным уровнем) зависит от интервала усреднения и равна 923 мкВт при усреднении за час, 2230 мкВт – за минуту и 4500 мкВт – за секунду. Максимальная мощность сигнала вещания 8000 мкВт.

Динамический диапазон D C сигналов вещания составляет для речи диктора 25…35 дБ, для инструментального ансамбля 40…50 дБ, для симфонического оркестра до 65 дБ.

Первичные дискретные сигналы обычно имеют вид прямоугольных импульсов постоянного или переменного тока, как правило, с двумя разрешёнными состояниями (двоичные или двухпозиционные).

Скорость модуляции определяется количеством единичных элементов (элементарных посылок), передаваемых в единицу времени, и измеряется в бодах:

В = 1/τ и, (2.23)

где τ и – длительность элементарной посылки.

Скорость передачи информации определяется количеством информации, передаваемой в единицу времени, и измеряется в бит/с:

где М – число позиций сигнала.

В двоичных системах (М=2) каждый элемент несет 1 бит информации, поэтому согласно (2.23) и (2.24) :

С max =В, бит/с (2.25)

Контрольные вопросы

1. Дайте определения понятиям "информация", "сообщение", "сигнал".

2. Как определить количество информации в отдельно взятом сообщении?

3. Какие виды сигналов существуют?

4. Чем отличается дискретный сигнал от непрерывного?

5. Чем отличается спектр периодического сигнала от спектра непериодического сигнала?

6. Дайте определение ширины полосы частот сигнала.

7. Поясните сущность факсимильной передачи сообщений.

8. Каким способом осуществляется развёртка ТВ изображения?

9. Чему равняется частота смены кадров в ТВ системе?

10. Поясните принцип работы передающей ТВ трубки.

11. Поясните состав полного ТВ сигнала.

12. Дайте понятие динамического диапазона?

13. Перечислите основные сигналы электросвязи. Какие частотные диапазоны занимают их спектры?

Обычно нам нет дела до того, как работает телефонная линия (но только не тогда, когда приходится кричать изо всех сил в телефонную трубку: "Повторите пожалуйста, ничего не слышно!").

Телефонные компании предоставляют клиенту множество самых разных услуг. В прейскурантах этих услуг разобраться не так просто - что, собственно, предлагается, и сколько за какую услугу следует платить. В этой статье мы ни словом не обмолвимся о ценах, однако попытаемся выяснить, в чем различие между наиболее часто предлагаемыми продуктами и услугами в области телефонной связи.

АНАЛОГОВЫЕ ЛИНИИ, ЦИФРОВЫЕ ЛИНИИ

Во-первых, линии бывают аналоговые и цифровые. Аналоговый сигнал меняется непрерывным образом; он всегда имеет определенное значение, представляющее, например, громкость и высоту передаваемого голоса или цвет и яркость определенного участка изображения. Цифровые сигналы имеют только дискретные значения. Как правило, сигнал либо включен, либо выключен, либо он есть, либо его нет. Иными словами, его значение равно или 1 или 0.

Аналоговые телефонные линии используются в телефонии с незапамятных времен. Даже телефоны пятидесятилетней давности, скорее всего, удастся подключить к абонентскому шлейфу - линии между домашней телефонной розеткой и центральной телефонной станцией. (Центральная телефонная станция - это не сверкающий небоскреб в центре города; длина абонентского шлейфа в среднем не превышает 2,5 миль (четырех километров), так что "центральная телефонная станция", как правило, помещается в каком-нибудь невзрачном здании неподалеку.)

Во время телефонного разговора встроенный в телефонную трубку микрофон преобразует речь в аналоговый сигнал, передаваемый на центральную телефонную станцию, откуда он попадает либо на другой абонентский шлейф, либо на другие коммутационные устройства, если вызываемый номер находится вне зоны действия данной станции. При наборе номера телефонный аппарат генерирует передаваемые по тому же основному каналу сигналы (in-band signals), указывающие, кому предназначен данный вызов.

За время своего существования телефонные компании накопили большой опыт в передаче речи. Установлено, что для выполнения этой задачи в основном достаточен диапазон частот от 300 до 3100 Гц. Напомним, что аудиосистемы класса hi-fi способны воспроизводить звук без искажений в частотном диапазоне 20-20000 Гц, а значит, телефонного диапазона хватает обычно только для того, чтобы абонент мог узнать звонящего по голосу (для других применений этот диапазон с большой вероятностью окажется чересчур узок - для передачи музыки, например, телефонная связь совершенно не годится). Плавный спад амплитудно-частотной характеристики на высоких и низких частотах телефонные компании обеспечивают с помощью аналогового телефонного канала 4000 Гц.

Центральная телефонная станция, как правило, оцифровывает сигнал, предназначенный для дальнейшей передачи по телефонной сети. За исключением Джилбет Каунти (шт. Арканзас) и Рэт Форк (шт. Вайоминг), во всех американских телефонных сетях сигнал между центральными станциями передается в цифровом виде. Хотя во многих компаниях используются цифровые учрежденческие АТС и средства передачи данных, а все средства ISDN основаны на цифровой кодировке, абонентские шлейфы по-прежнему остаются "последним оплотом" аналоговой связи. Объясняется это тем, что большинство телефонов в частных домах не имеют средств оцифровки сигнала и не могут работать с линиями пропускной способностью свыше 4000 Гц.

НА ЧТО ХВАТАЕТ 4000 ГЦ?

Модем - это устройство, преобразующее цифровые сигналы компьютера в аналоговые сигналы с частотами, в пределах полосы пропускания телефонной линии. Максимальная пропускная способность канала напрямую связана с полосой пропускания. Точнее, величина пропускной способности (в битах/сек) определяется полосой пропускания и допуском на отношение сигнал/шум. В настоящее время максимальная пропускная способность модемов - 33,6 Кбит/с - уже близка к этому пределу. Пользователи модемов с пропускной способностью 28,8 Кбит/с хорошо знают, что зашумленные аналоговые линии редко обеспечивают их полную пропускную способность, которая часто оказывается куда ниже. Сжатие, кэширование и прочие увертки помогают несколько выправить ситуацию, и тем не менее мы скорее доживем до изобретения вечного двигателя, чем до появления модемов с пропускной способностью 50 или хотя бы 40 Кбит/с на обычных аналоговых линиях.

Телефонные компании решают обратную задачу - оцифровывают аналоговый сигнал. Для передачи получающегося цифрового сигнала используются каналы пропускной способностью 64 Кбит/с (это - мировой стандарт). Такой канал, именуемый DS0 (digital signal, нулевой уровень), является базовым кирпичиком, из которого строятся все прочие телефонные линии. Например, можно объединить (правильный термин - уплотнить) 24 канала DS0 в канал DS1. Арендуя линию T-1, пользователь фактически получает канал DS1. Подсчитывая суммарную пропускную способность DS1, надо помнить, что после каждых 192 информационных бит (то есть 8000 раз в секунду) передается один бит синхронизации: всего получается 1,544 Мбит/с (64000 умножить на 24 плюс 8000).

ВЫДЕЛЕННЫЕ ЛИНИИ, КОММУТИРУЕМЫЕ ЛИНИИ

Помимо линии Т-1 клиент может арендовать выделенные линии или пользоваться обычными коммутирующими линиями. Арендуя у телефонной компании канал T-1 или низкоскоростную линию передачи данных, например цифровую линию dataphone (dataphone digital service, DDS), абонент фактически берет напрокат прямое соединение и в результате становится единственным пользователем канала с пропускной способностью 1,544 Мбит/с (T-1) или 56 Кбит/с (низкоскоростная линия).

Хотя технология frame relay и предполагает коммутацию индивидуальных кадров, соответствующие услуги предлагаются пользователю в виде виртуальных каналов связи между фиксированными конечными точками. С точки зрения архитектуры сети, frame relay следует рассматривать, скорее, как выделенную, нежели как коммутируемую линию; немаловажен тот факт, что цена такой услуги при той же пропускной способности существенно ниже.

Коммутационные услуги (примером их может служить обслуживание обычного квартирного телефона) - это услуги, приобретаемые у телефонной компании. Абоненту по требованию предоставляется осуществляемое с помощью сети коммутаторов общего пользования соединение с любым узлом телефонной сети. В отличие от ситуации с выделенными линиями, плата в этом случае взимается за время соединения или реальный объем трафика и зависит большей частью от частоты и объема пользования сетью. Коммутационные услуги цифровой связи могут предоставляться на основе протоколов X.25, Switched 56, ISDN Basic Rate Interface (BRI), ISDN Primary Rate Interface (PRI), Switched Multimegabit Data Service (SMDS) и ATM. Некоторые организации, например университеты, железные дороги или муниципальные организации, создают частные сети с использованием собственных коммутаторов и арендованных, а порой даже своих собственных линий.

Если линия, полученная от телефонной компании, цифровая, то для обмена данными между телефонной сетью и оконечным оборудованием (этим термином телефонные компании обозначают такое оборудование, как компьютеры, факсимильные аппараты, видеотелефоны и цифровые телефонные аппараты) не требуется выполнять преобразование цифровых сигналов в аналоговые, а следовательно, необходимость в модеме отпадает. Тем не менее и в этом случае пользование телефонной сетью накладывает определенные требования на абонента. В частности, следует обеспечивать корректную концевую заделку абонентского шлейфа, правильную передачу трафика и поддержку диагностики, выполняемой телефонной компанией.

Линия, поддерживающая протокол ISDN BRI, должна быть подсоединена к устройству под названием NT1 (network termination 1). Помимо концевой заделки линии и поддержки диагностических процедур устройство NT1 осуществляет согласование двухпроводного абонентского шлейфа с четырехпроводной системой цифрового оконечного оборудования. При использовании арендованных цифровых линий T-1 или DDS, а также услуг цифровой связи в качестве нагрузки линии следует использовать модуль обслуживания канала (channel service unit, CSU). CSU работает как терминатор, обеспечивает корректную нагрузку линии и отрабатывает команды диагностики. Оконечное оборудование, имеющееся у клиента, взаимодействует с модулем обслуживания данных (data service unit, DSU), который преобразует цифровые сигналы к стандартному виду и передает их на CSU. Конструктивно CSU и DSU часто объединяются в один модуль под названием CSU/DSU. DSU можно встроить в маршрутизатор или мультиплексор. Таким образом, и в этом случае (хотя модемы здесь не нужны) потребуется установка определенных интерфейсных устройств.

НОСИТЕЛИ ДЛЯ ТЕЛЕФОННОЙ СВЯЗИ

Большинство аналоговых абонентских шлейфов лишь при очень благоприятных условиях могут обеспечить пропускную способность в 33,6 Кбит/с. С другой стороны, та же самая витая пара, соединяющая офис с центральной телефонной станцией, вполне может использоваться для работы с ISDN BRI, что дает пропускную способность по данным 128 Кбит/с и еще 16 Кбит/с для управления и настройки. В чем тут дело? Сигнал, передаваемый по аналоговым телефонным лииниям, подвергается фильтрации для подавления всех частот свыше 4 КГц. При использовании цифровых линий такой фильтрации не требуется, поэтому полоса пропускания витой пары оказывается существенно шире, а следовательно, повышается и пропускная способность.

Арендуемые линии с пропускной способностью 56 и 64 Кбит/с представляют собой двухпроводные или четырехпроводные цифровые линии (в последнем случае одна пара используется для передачи, а другая - для приема). Эти же линии пригодны в качестве носителя для предоставления услуг цифровой связи, например frame relay или Switched 56. В качестве носителя для T-1, а также ISDN PRI и frame relay часто применяются четырехпроводные линии или даже оптические кабели. Линии T-3 иногда представляют собой коаксиальный кабель, но чаще они все-таки выполняются на основе оптического.

Хотя ISDN по-прежнему и привлекает самое широкое внимание как средство высокоскоростной передачи сигнала на большие расстояния, в последнее время появились более новые средства связи для "последней мили" (т.е. абонентского шлейфа). Компании PairGain и AT&T Paradyne предлагают продукты на базе разработанной компанией Bellcore технологии высокоскоростного цифрового абонентского шлейфа (high bit-rate digital subscriber loop, HDSL). Данные продукты позволяют уравнять возможности всех имеющихся абонентских шлейфов; установив устройства HDSL на обоих концах линии, можно получить пропускную способность DS1 (1,544 Мбит/с) практически на всех существующих абонентских шлейфах. (HDSL длиной до 3,7 км может использоваться на абонентских шлейфах без повторителей в случае стандартных проводов 24 калибра. Для работы обычных линий T-1 необходимо ставить повторители через каждые километр-полтора). Альтернативой HDSL в достижении пропускной способности DS1 на "последней миле" является либо использование оптического кабеля (что весьма накладно), либо установка нескольких повторителей на каждой линии (это не так дорого, как оптоволоконная техника, но все равно недешево). Кроме того, в данном случае существенно возрастают расходы телефонной компании, а следовательно и клиента, на поддержание линии в рабочем состоянии.

Но даже и HDSL - не последнее слово техники в области увеличения пропускной способности на "последней миле". Ожидается, что наследник HDSL, технология асимметричного цифрового абонентского шлейфа (asymmetrical digital subscriber line, ASDL), сможет обеспечить пропускную способность 6 Мбит/с в одном направлении; пропускная способность другого существенно ниже - что-нибудь около 64 Кбит/с. В идеале или, как минимум, при отсутствии чьей-либо монополии - если считать, что стоимость услуги для клиента примерно соответствует ее себестоимости для телефонной компании - большая доля клиентов могла бы пользоваться ISDN PRI (или другими услугами на базе T-1) по цене, сравнимой с теперешней ценой ISDN BRI.

Однако сегодня сторонникам ISDN, скорее всего, беспокоиться не о чем; в большинстве случаев телефонные компании предпочтут увеличить пропускную способность линий и положить всю прибыль себе в карман без снижения стоимости услуг для клиента. Вовсе не очевидно, что тарифы на услуги должны быть основаны на здравом смысле.

Таблица 1. Типы телефонных услуг

Тип линии

Услуга

Вид коммутации

Носитель абонентского шлейфа

Аналоговая линия

Коммутация линий

Двухпроводная витая пара

DS0 (64 Кбит/с)

DDS (арендуемая линия)

Выделенная линия

PVC с коммутацией

Двух- или четырехпроводная витая пара

Коммутация

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двух- или четырехпроводная витая пара

Коммутация линий

Двухпроводная витая пара

Несколько DS0

(от 64 Кбит/с до

1536 Мбит/с с

Шагом 64 Кбит/с)

Выделенная линия

Двух- или четырехпроводная витая пара

PVC с коммутацией

Двух- или четырехпроводная витая пара

(1544 Мбит/с)

(24 линии DS0)

Арендуемая линия T-1

Выделенная линия

PVC с коммутацией

Четырехпроводная витая пара или оптоволокно

Коммутация пакетов

Четырехпроводная витая пара или оптоволокно

Коммутация линий

Четырехпроводная витая пара или оптоволокно

(44736 Мбит/с)

(28 линий DS1,

672 линии DS0)

Сотовая коммутация

Коммутация пакетов

Коаксиальный кабель или оптоволокно

Со Стивом Штайнке можно связаться через Internet по адресу:

Основные параметры полосы пропускания

Основные параметры, которые характеризуют полосу пропускания частот - это ширина полосы пропускания и неравномерность АЧХ в пределах полосы.

Ширина полосы

Ширина полосы обычно определяется как разность верхней и нижней граничных частот участка АЧХ, на котором амплитуда колебаний (или для мощности) от максимальной. Этот уровень приблизительно соответствует -3 дБ .

Ширина полосы пропускания выражается в единицах частоты (например, в Гц).

Расширение полосы пропускания позволяет передать большее количество информации.

Неравномерность АЧХ

Неравномерность АЧХ характеризует степень отклонения от прямой, параллельной оси частот.

Неравномерность АЧХ выражается в децибелах .

Ослабление неравномерности АЧХ в полосе улучшает воспроизведение формы передаваемого сигнала.

Конкретные примеры

В теории антенн полоса пропускания - диапазон частот, при которых антенна работает эффективно, обычно окрестность центральной (резонансной) частоты. Зависит от типа антенны, ее геометрии. На практике полоса пропускания обычно определяется по уровню КСВ (коэффициента стоячей волны). КСВ МЕТР

В оптике полоса пропускания - это величина, обратная к величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км.

Поскольку даже самый лучший монохроматичный лазер всё равно излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке этого пользуются термином полоса пропускания. Измеряется полоса пропускания (в данном случае) в МГц/км.

Из определения полосы пропускания видно, что дисперсия накладывает ограничение на дальность передачи и на верхнюю частоту передаваемых сигналов.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Полоса частот" в других словарях:

    полоса частот - Область частот, ограниченная нижним и верхним пределами [ГОСТ 24375 80] полоса частот Совокупность частот в рассматриваемых пределах [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения… …

    полоса частот - 06.01.16 полоса частот [ frequency band]: Непрерывный набор частот, ограниченный верхним и нижним пределами. Примечание 1 Полоса частот характеризуется двумя значениями, которые определяют ее положение на частотной оси, например, ее нижняя и… … Словарь-справочник терминов нормативно-технической документации

    Полоса частот - 1. Область частот, ограниченная нижним и верхним пределами Употребляется в документе: ГОСТ 24375 80 2. Непрерывная полоса частот, заключенная между двумя пределами Употребляется в документе: ГОСТ Р 51317.4.3 99 Устойчивость к радиочастотному… … Телекоммуникационный словарь

    полоса частот - dažnių juosta statusas T sritis fizika atitikmenys: angl. frequency band vok. Frequenzband, n rus. полоса частот, f; частотная полоса, f pranc. bande de fréquences, f … Fizikos terminų žodynas

    полоса частот - dažnių juosta statusas T sritis automatika atitikmenys: angl. frequency band vok. Frequenzband, n rus. полоса частот, f pranc. bande de fréquences, f … Automatikos terminų žodynas

    полоса частот - dažnių juosta statusas T sritis Standartizacija ir metrologija apibrėžtis Signalų generatoriaus dažnių diapazono dalis, kurioje dažnį galima keisti tolydžiai arba pakopomis. atitikmenys: angl. frequency band vok. Frequenzbereich, n rus. полоса… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    полоса частот - rus полоса (ж) частот, диапазон (м) частот eng frequency band fra bande (f) de fréquence deu Frequenzband (n) spa rango (m) de frecuencias, banda (f) de frecuencias … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    полоса частот (в электросвязи) - полоса частот диапазон частот Область изменения частоты сигнала, ограниченная нижним и верхним пределами. На практике широко применяется определение верхней границы по формуле fниж(n)=3·10n 1 Гц, при этом нижняя граница равна верхней… … Справочник технического переводчика

    полоса частот (в вибрации) - полоса частот Совокупность частот в рассматриваемых пределах [ГОСТ 24346 80] Тематики вибрация EN frequency band DE frequenzband FR bande de frequence … Справочник технического переводчика

    полоса частот СВЧ диода - Δf/f Δf/f Интервал частот, в котором СВЧ диод, настроенный на заданную частоту, обеспечивает заданные параметры и характеристики в неизменном рабочем режиме. [ГОСТ 25529 82] Тематики полупроводниковые приборы Обобщающие термины… … Справочник технического переводчика