Концентратор (хаб) – многопортовое устройство, объединяющее несколько устройств в один сегмент. Фактически хаб представляет собой мультипортовый репитер, то есть в его основную функциональную задачу входит получение данных от подключённых к портам концентратора компьютеров или других хабов, реформирование сигнала одновременно с его усилением, и его дальнейшая ретрансляция на другие порты.

Принцип действия концентратора следующий: компьютер посылает концентратору сигнал, который передаётся всем рабочим станциям, подключённым к нему. Когда компьютер, которому адресовано сообщение, получает такой сигнал, он посылает запрашиваемую информацию обратно концентратору, который снова пересылает её всем компьютерам, хотя только один компьютер будет ее обрабатывать.

Концентратор используется в сетях с топологией «звезда». К портам концентратора можно подключать узлы сети: компьютер, сетевой принтер, накопитель, другой концентратор и т.п. Концентратор может иметь порты RJ-45 и BNC, что позволяет использовать коаксиальный кабель в качестве магистрального, последовательно соединяя несколько хабов в цепочку

Конструктивное устройство, алгоритмы работы, функции и характеристики концентраторов зависят от области их применения. Поэтому для каждой технологии построения сети производят свои концентраторы (Ethernet, Token Ring, FDDI), предназначенные для работы именно по этой технологии (концентратор в сети Ethernet выполняет повторение кадра для всех портов, в сети 100VG-AnyLAN повторяет кадра только в порт, к которому подключён адресат кадра).

Концентраты бывают двух типов:

пассивный – выполняет только соединение узлов в сегменте среды передачи данных, без регенерации сигналов. При использовании такого концентратора каждый сегмент кабеля может иметь длину не более половины максимально возможной для используемой технологии (неэкранированная витая пара позволяет сигнал между устройствами на расстоянии до 300 метров, поэтому каждый сегмент от пассивного концентратора до сетевого устройства может иметь не более 150 м). При использовании пассивного концентратора каждое сетевое устройство получает сигналы, посланные всеми другими устройствами, подключёнными к концентратору;

активный – восстанавливает и усиливает принимаемые сигналы, что позволяет увеличить максимальную длину подключаемых к концентратору сегментов кабеля. Также с помощью активного концентратора можно создавать сложные иерархические сетевые структуры. Активные концентраторы также называют переключающиеся.

В зависимости от области применения концентраторы могут быть:

с фиксированным количеством портов – выполнен в виде отдельного корпуса с определённым количеством портов (5, 8, 16, 24), элементами индикации и управления. Два крайних разъёма используются для подключения к другим концентраторам с помощью специальных магистральных кабелей, а к остальным разъёмам подключаются абоненты с помощью адаптерных кабелей;



модульный на основе шасси – имеет общее шасси с внутренней шиной, к которой подключают модули с фиксированным количеством портов. При этом модули могут различаться количеством портов и типом поддерживаемой физической среды;

стековая конструкция – выполнен в виде отдельного корпуса, но имеет специальные порты для объединения несколько таких корпусов в единый. Скорость работы внутренней шины такого концентратора выше, чем скорость, с которой он может передавать данные, поэтому скорость взаимодействия стековых концентраторов между собой будет выше, чем при соединении через порт. При этом число сегментов сети ограничено, поэтому объединение четырёх стековых концентраторов воспринимается как один.

Помимо основной функции (повторение и ретрансляция пакетов) концентратор может иметь дополнительные возможности:

две скорости при соединении разных типов сетей. Большинство моделей концентраторов являются двухскоростными, но бывают и устройства исключительно с одной скоростью;

беспроводная точка доступа – современный коммутатор имеет встроенную беспроводную точку доступа, используемую для беспроводной сети;

порт uplink – позволяет подключать концентратор к другим концентраторам (можно не заменять при недостатке подключений). Один из разъёмов RJ-45 концентратора имеет разводку, позволяющую присоединять его к другим хабам – каскадирование. Этот порт обозначается In, Uplink, Cascading, Cross-Over. В некоторых случаях рядом с таким портом имеется переключатель MDI/MDI-X, позволяющий включать порт в обычный режим или режим каскадирования. Если порт не оснащён переключателем, но к нему требуется подключить ещё один компьютер (все порты заняты), используют кабель «cross-over» для соединения по принципу «точка-точка». Порт uplink также используется для подключения концентратора к маршрутизатору или шлюзу, обеспечивающему доступ сети к Internet; при использовании нескольких концентраторов все они подключаются непосредственно к маршрутизатору или шлюзу, а не последовательно друг к другу.

Концентратор - центральный узел обмена информацией между несколькими конечными станциями сети. Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются.

Коммутатор - осуществляет передачу пакетов между всеми парами портов по алгоритму моста. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю. Коммутатор работает на канальном уровне модели OSI.

Принцип работы коммутатора: Коммутатор хранит в памяти таблицу, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя ещё не известен, то кадр будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется

Режимы коммутации .

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания и надёжность передачи.

    С промежуточным хранением. Коммутатор читает всю информацию во фрейме, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него фрейм.

    Сквозной. Коммутатор считывает во фрейме только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

    Бесфрагментный или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий.

Особенности технической реализации коммутаторов.

    коммутационная матрица ; Основной и самый быстрый способ взаимодействия процессоров портов. Входные блоки процессоров портов на основании просмотра адресной таблицы коммутатора определяют по адресу назначения номер выходного порта. Эту информацию они добавляют к байтам исходного кадра в виде специального ярлыка - тэга (tag).

    разделяемая память; Входные блоки процессоров портов соединяются с переключаемым входом разделяемой памяти, а выходные блоки этих же процессоров соединяются с переключаемым выходом этой памяти. Переключением входа и выхода разделяемой памяти управляет менеджер очередей выходных портов. В разделяемой памяти менеджер организует несколько очередей данных, по одной для каждого выходного порта. Входные блоки процессоров передают менеджеру портов запросы на запись данных в очередь того порта, который соответствует адресу назначения пакета. Менеджер по очереди подключает вход памяти к одному из входных блоков процессоров и тот переписывает часть данных кадра в очередь определенного выходного порта. По мере заполнения очередей менеджер производит также поочередное подключение выхода разделяемой памяти к выходным блокам процессоров портов, и данные из очереди переписываются в выходной буфер процессора.

    общая шина. Коммутаторы с общей шиной используют для связи процессоров портов высокоскоростную шину, используемую в режиме разделения времени. Входной блок процессора помещает в ячейку, переносимую по шине, тэг, в котором указывает номер порта назначения. Каждый выходной блок процессора порта содержит фильтр тэгов, который выбирает тэги, предназначенные данному порту. Шина, так же как и коммутационная матрица, не может осуществлять промежуточную буферизацию, но так как данные кадра разбиваются на небольшие ячейки, то задержек с начальным ожиданием доступности выходного порта в такой схеме нет.

Конструктивное исполнение коммутаторов.

    автономные коммутаторы с фиксированным количеством портов;

    модульные коммутаторы на основе шасси;

    коммутаторы с фиксированным количеством портов, собираемые в стек.

Управляемые коммутаторы Ethernet . Управление коммутаторами производится на основе протоколов SNMP (Simple Network Management Protocol) и RMON (Remote Monitoring). Протокол SNMP входит в стек протоколов TCP/IP и широко используется для получения от коммутатора информации о его статусе, производительности и других характеристиках, которые хранятся в базе данных коммутатора. Протокол RMON определяет возможность удаленного мониторинга и управления коммутатором.

RMON позволяет управлять и следить за состоянием коммутатора с удаленного компьютера с возможностью передачи требуемых данных по сети. Кроме того, в протокол RMON были добавлены дополнительные счетчики об ошибках, более гибкие средства анализа статистики, средства фильтрации и т.д.

Управляемые коммутаторы обладают также дополнительными функциями, важнейшими из которых являются: 1. фильтрация трафика; 2. приоритетная обработка кадров; 3. поддержка протокола Spanning Tree Protocol (STP); 4. поддержка транкового объединения портов; 5. поддержка виртуальных сетей VLAN.

Фильтрация трафика позволяет создавать пользовательские фильтры, которые ограничивают доступ заданных заранее групп пользователей к определенным службам сети. Фактически фильтрация трафика - это сервис, повышающий уровень сетевой безопасности.

Приоритетная обработка кадров подразумевает возможность обрабатывать входящие кадры не на основе принципа First Input First Output (FIFO), когда каждый кадр обрабатывается в соответствии с очередью его поступления, а в соответствии с указанным приоритетом.

Поддержка протокола Spanning Tree Protocol, то есть алгоритма покрывающего дерева, определяет корректную работу коммутатора в случае, когда между конечными узлами сети существует несколько логических или физических маршрутов, в состав которых входят коммутаторы. Такие дублирующие пути могут возникнуть случайно, при ошибках в монтаже сети, или могут прокладываться специально для повышения отказоустойчивости сети. Суть алгоритма состоит в определении оптимального маршрута и блокировке или резервировании всех остальных

Поддержка транкового объединения портов позволяет создавать высокоскоростные каналы связи, объединяя несколько физических каналов в один логический, что можно использовать для связи коммутаторов друг с другом или коммутатора с сервером.

Поддержка виртуальных сетей (Virtual LAN, VLAN) позволяет с помощью коммутатора создавать изолированные друг от друга локальные сети.

Spanning Tree .

Протокол покрывающего дерева.

Поддерживающие алгоритм STA мосты и коммутаторы автоматически создают активную древовидную конфигурацию связей (то есть связную конфигурацию без петель), находя ее адаптивно с помощью обмена служебными пакетами.

В сети определяется корневой мост (root bridge), от которого строится дерево. Для каждого моста определяется корневой порт (root port) - это порт, который имеет кратчайшее из всех портов данного моста расстояние до корневого моста (точнее, до любого из портов корневого моста).

Расстояние до корня (root path cost) определяется как суммарное условное время на передачу данных от порта данного моста до порта корневого моста. Условное время сегмента (designated cost) рассчитывается как время, затрачиваемое на передачу одного бита информации в 10-наносекундных единицах между непосредственно связанными по сегменту сети портами. Так, для сегмента Ethernet это время равно 10 условным единицам, а для сегмента Token Ring 16 Мб/с - 6.25.

Для каждого логического сегмента сети выбирается так называемый назначенный мост (designated bridge), один из портов которого будет принимать пакеты от сегмента и передавать их в направлении корневого моста через корневой порт данного моста, а также принимать пакеты для данного сегмента, пришедшие на корневой порт со стороны корневого моста. Такой порт называется назначенным портом (designated port). Назначенный порт сегмента имеет наименьшее расстояние до корневого моста, среди всех портов, подключенных к данному сегменту. Назначенный порт у сегмента может быть только один. У корневого моста все порты являются назначенными, а их расстояние до корня полагается равным нулю. Корневого порта у корневого моста нет.

Для того, чтобы мосты могли идентифицировать себя и своих ближних и дальних соседей по сети, каждой мост, поддерживающий STA, имеет уникальный идентификатор. Этот идентификатор состоит из двух частей. Младшую часть составляет MAC-адрес моста, имеющий длину 6 байтов. Старшая часть, имеющая длину 2 байта, является приоритетом данного моста, и его может изменять администратор сети по своему усмотрению.

Идентификатор моста играет определяющую роль при выборе корневого моста. Приоритет имеет преимущественное значение в этом выборе - корневым выбирается мост, имеющий наименьшее значение идентификатора, а так как поле приоритета находится в старших разрядах, то его значение подавляет значение MAC-адреса. Если же администратор назначил всем мостам равный приоритет (то есть не захотел влиять на выбор корневого моста), то корневым будет выбран мост с наименьшим значением MAC-адреса.

Порты внутри каждого моста также имеют свои идентификаторы. Идентификатор порта состоит из 2 байтов, первый из которых (старший) может изменяться администратором и является приоритетом порта, а второй представляет собой порядковый номер порта для данного моста (номера портов начинаются с единицы). Идентификатор порта используется при выборе корневого и назначенного порта моста - если несколько портов имеют одинаковое расстояние до корня, то выбирается тот порт, идентификатор которого меньше. Аналогично случаю с идентификатором моста, приоритет порта может быть задан администратором для того, чтобы данный порт получил преимущество перед другими.

VLAN . Виртуальной сетью (Virtual LAN, VLAN) называется группа узлов сети, трафик которой, в том числе и широковещательный, на канальном уровне полностью изолирован от других узлов сети. Это означает, что передача кадров между разными виртуальными сегментами на основании адреса канального уровня невозможна, независимо от типа адреса - уникального, группового или широковещательного. Назначение технологии виртуальных сетей состоит в облегчении процесса создания независимых сетей, которые затем должны связываться с помощью протоколов сетевого уровня

Типы виртуальных сетей

Существует несколько основных способов построения виртуальных сетей:

    Группировка портов.

    Группировка МАС-адресов.

    Использование меток в дополнительном поле кадра - частные протоколы и спецификации IEEE 802.1 Q.

VLAN на основе группировки портов .

Устройства связываются в виртуальные сети на основе портов коммутатора, к которым они физически подключены. То есть каждой порт коммутатора включается в одну или более виртуальных сетей. К достоинствам данного типа виртуальных сетей можно отнести высокий уровень безопасности и простоту в настройке. К недостаткам можно отнести статичность данного типа виртуальных сетей. То есть при подключении компьютера к другому порту коммутатора необходимо каждый раз изменять настройки VLAN.

VLAN на основе группировки МАС-адресов.

Данный тип виртуальных сетей группирует устройства на основе их MAC-адресов. Для получения доступа в виртуальную сеть, устройство должно иметь MAC-адрес, который содержится в списке адресов данной виртуальной сети. Помимо прочего, отличительной особенностью данного типа виртуальных сетей является то, что они ограничивают только широковещательный трафик. Отсюда вытекает их название – широковещательные домены на базе MAC-адресов. Теоретически один MAC-адрес может являться членом нескольких широковещательных доменов, на практике данная возможность определяется функциональностью конкретной модели коммутатора.

Широковещательные домены на базе MAC-адресов позволяют физически перемещать станцию, позволяя, тем не менее, оставаться ей в одном и том же широковещательном домене без каких-либо изменений в настройках конфигурации.

VLAN на базе маркированных кадров (IEEE 802.1Q).

В отличие от двух предыдущих типов виртуальных сетей VLAN на основе маркированных кадров могут быть реализованы на двух и более коммутаторах. В заголовок каждого кадра Ethernet вставляется маркер, который идентифицирует членство компьютера в определенной VLAN.

Маркеры с номером VLAN в виртуальных сетях 802.1Q могут быть добавлены:

    явно, если сетевые карты поддерживают стандарт IEEE 802.1Q, и на этих картах включены соответствующие опции, то исходящие кадры Ethernet от этих карт будут содержать маркеры идентификации;

    неявно, если сетевые адаптеры, подключенные к этой сети, не поддерживают стандарт IEEE 802.1Q, то добавление маркеров выполняется на коммутаторе на основе группировки по портам.

Концентраторы

В структурированной кабельной конфигурации все входящие в сеть ПК взаимодействуют с концентратором (или коммутатором).

Hub (хаб; концентратор) - устройство множественного доступа, выполняющее роль центральной точки соединения в топологии "физическая звезда". Наряду с традиционным названием "концентратор" в литературе встречается также термин "хаб".

Соединенные с концентратором ПК образуют один сегмент локальной сети. Такая схема упрощает подключение к сети большого числа пользователей, даже если они часто перемещаются. В основном функция концентратора состоит в объединении пользователей в один сетевой сегмент. Концентраторы бывают разных видов и размеров и обеспечивают соединение разного числа пользователей - от нескольких сотрудников в небольшой фирме до сотен ПК в сети, охватывающей комплекс зданий. Функции данных устройств также различны: от простых концентраторов проводных линий до крупных устройств, выполняющих функции центрального узла сети, поддерживающих функции управления и целый ряд стандартов (Ethernet, Fast Ethernet, Gigabit Ethernet, FDDI и т.д.). Существуют также концентраторы, играющие важную роль в системе защиты сети.

Концентратор начального уровня (базовый концентратор) - это простое, автономное устройство, которое может стать для многих организаций хорошей "отправной точкой".

Наращиваемые (стековые) концентраторы позволяют постепенно увеличивать размер сети. Такие концентраторы соединяются друг с другом гибкими кабелями расширения, ставятся один на другой и функционируют как один концентратор. Благодаря низкой стоимости в расчете на порт наращиваемые концентраторы стали особенно популярны.

При применении концентратора все пользователи делят между собой полосу пропускания сети. Пакет, принимаемый по одному из портов концентратора, рассылается во все другие порты, которые анализируют этот пакет (предназначен он для них или нет). При небольшом числе пользователей такая система превосходно работает. Между тем в случае увеличения числа пользователей начинает сказываться конкуренция за полосу пропускания, что замедляет трафик в локальной сети.

Традиционные концентраторы поддерживают только один сетевой сегмент, предоставляя всем подключаемым к ним пользователям одну и ту же полосу пропускания. Концентраторы с коммутацией портов или сегментируемые концентраторы (такие как концентраторы семейства SuperStack II PS Hub) позволяют свести данную проблему к минимуму, выделив пользователям любой из четырех внутренних сегментов концентратора (каждый из этих сегментов имеет полосу пропускания 10 Мбит/с). Подобная схема дает возможность гибко распределять полосу пропускания между пользователями и балансировать нагрузку сети.

Двухскоростные концентраторы (dual-speed) можно с выгодой использовать для создания современных сетей с совместно используемыми сетевыми сегментами. Они поддерживают существующие каналы Ethernet 10 Мбит/с и новые сети Fast Ethernet 10 Мбит/с, автоматически опознавая скорость соединения, что позволяет не настраивать конфигурацию вручную. Это упрощает модернизацию соединений - переход от сети Ethernet к Fast Ethernet, когда необходима поддержка новых приложений, интенсивно использующих полосу пропускания сети, или сегментов с большим числом пользователей.

Кроме того, концентраторы служат центральной точкой для подключения кабелей, изменения конфигурации, поиска неисправностей и централизованного управления, упрощая выполнение всех этих операций.

Коммутаторы (Switch ).

Switch – многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами.

В сети с коммутацией пакетов - устройство, направляющее пакеты, обычно на один из узлов магистральной сети. Такое устройство называется также коммутатором данных (data PABX).

Коммутатор предоставляет каждому устройству (серверу, ПК или концентратору), подключенному к одному из его портов, всю полосу пропускания сети. Это повышает производительность и уменьшает время отклика сети за счет сокращения числа пользователей на сегмент. Как и двухскоростные концентраторы, новейшие коммутаторы часто конструируются для поддержки 10 или 100 Мбит/с, в зависимости от максимальной скорости подключаемого устройства. Если они оснащаются средствами автоматического опознавания скорости передачи, то могут сами настраиваться на оптимальную скорость - изменять конфигурацию вручную не требуется.

В отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату), так как знают MAC-адрес (Media Access Control) каждого подключенного устройства (аналогично тому, как почтальон по почтовому адресу определяет, куда нужно доставить письмо). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети современных сложных бизнес приложений.

Технология USB, которая изобреталась для соединения компьютерного и телекоммуникационного устройств, сейчас является основным средством для подключения многих гаджетов. Их количество просто удивляет – это клавиатуры, мыши, модемы, кулеры, внешние жесткие диски, принтеры, флешки, даже кофеварки и лампы. И поскольку все эти устройства нужно подключать к компьютеру, то в настоящее время банально не хватает USB-портов.

Решить данную проблему можно двумя способами. Самый простой способ – это подключать только те устройства, которые нужны в данный момент, а неиспользующиеся устройства отсоединять, освобождая тем самым USB-порты. А второй способ – это приобрести оригинальное приспособление, именуемого USB-концентратоом (USB-хаб).

USB-хаб представляет собой небольшое устройство, в котором есть несколько USB-портов. Оно подсоединяется к одному из USB-портов компьютера (занимая тем, самым всего, один USB разъем), и дает возможность использовать несколько USB-устройств. Таким образом, USB-концентратор увеличивает количество USB разъемов на компьютере, снижает их износ, а также облегчает процесс использования многочисленных устройств.

Виды USB-концентраторов

Существует четыре вида USB-концентраторов. Первый – это карта USB PCI, которая подсоединяется в слот PCI на материнской плате. Для этого придется открывать системный блок, и если вы не разбираетесь в этом, то лучше этот вид USB-хаба не использовать.

Второй вид – это не питаемый USB-концентратор. Это простое устройство подсоединяется к одному из внешних USB-портов компьютера. После этого к нему можно будет подключать любые другие устройства. Такие USB-концентраторы очень компактны и отлично подходят как для компьютеров, так и для ноутбуков. Но у них есть небольшой минус. Некоторые USB-устройства (принтер, цифровая камера, сканер и т.д.) нуждаются в электропитании, и данный вид концентратора не сможет обеспечить их нужным количеством электроэнергии, особенно если подключить сразу несколько устройств.

Третий вид – питаемый USB-концентратор. Он также очень компактный и подключается к внешнему USB-разъему компьютера. Кроме того, такой USB-концентратор можно подключить напрямую в розетку. Это дает возможность подсоединять к нему любые виды USB-устройств.

И четвертый вид – это компьютерная карта USB. Если в работе используется ноутбук, а также нужно постоянно перемещаться с ним, то отличной альтернативой USB-хабу будет именно такая карта USB. Она подключается к USB-разъему на боковой стороне ноутбука и дает возможность подключить еще два дополнительных устройства.

Сетевой концентратор, иначе называемый хабом - это контроллер, объединяющий несколько Ethernet-устройств в один сетевой сегмент. Устройства подключаются к хабу с помощью оптоволоконного или коаксиального кабеля. Применяется для этого и

витая пара. Принцип работы концентратора несложен: он размножает все пришедшие пакеты данных и отсылает их во все подключенные к нему порты.

Концентратор сетевой, как и остальные типы концентраторов, имеет свои качественные характеристики. Во-первых, производительность и цена хаба зависят от количества портов. Чем больше Ethernet-устройств к нему подключается, тем выше производительность и стоимость концентратора. Обычно хаб оснащен четным количеством разъемов, число которых варьируется от четырех до 24, однако некоторые виды имеют пять выходов. Количество портов можно увеличить, каскадно соединив несколько хабов. Для такого подключения в каждом концентраторе предусмотрен специальный разъем.

Имеет сетевой концентратор и еще одну немаловажную характеристику - скорость копирования и передачи пакетов с данными. Некоторые хабы способны и

зменять свою скорость в диапазоне от десяти до ста мегабит в секунду. В таких устройствах она меняется двумя способами: или автоматически, или вручную, с помощью переключателя. При этом установленная скорость распространяется на все активные порты. Различаются хабы и по типу сетевого носителя. Как правило, эта роль достается либо либо витой паре, но есть концентраторы, поддерживающие и другие типы носителей. Также существуют хабы для смешанных типов, например, поддерживающие «гибрид» витой пары с коаксиальным кабелем.

Принцип работы хабов весьма несовершенен. Пакет данных, пришедший с одного канала, сетевой концентратор копирует во все остальные подключенные к нему каналы, что сильно снижает скорость интернета, поскольку все веб-устройства соединяются с сетью через общий канал. Если два пакета копируются одновременно, может возникнуть коллизия, то есть столкновение одинаковых сигналов, при котором некоторые данные теряются. Некоторые виды концентраторов защищены от слишком большого числа коллизий. Как правило, основаны они на витой паре. В случае сбоя это позволяет изолировать отдельное

устройство, тогда как сетевой концентратор, подключенный через отключает сразу весь сегмент.

Влияет хаба и на безопасность данных. Если компьютер входит в пакеты данных одной системы доходят до всех остальных узлов. Из-за этого все личные настройки соцсетей, пароли блогов, форумов и прочие закрытые данные могут стать известны всем членам этой сети. По этим причинам сетевой USB-концентратор все чаще заменяется или свитчем. Это устройство, получившее ошибочное звание «интеллектуального концентратора», различает МАС-адреса входящих в сеть компьютеров и отсылает данные только в выбранный пользователем порт. Пакеты при этом проходят через буфер, что исключает возникновение коллизий, перегрузку линии и утечку данных. Благодаря надежности и невысокой цене, свитчи все чаще используются в домашних системах, тогда как хабы уже практически не продаются.