Шумомер – это электронный прибор, предназначенный для измерения уровня громкости в децибелах. Данное оборудование широко используется в быту и отличается высокой степенью точности. Оно имеет сравнительно невысокую стоимость и не требует сложных настроек. Чтобы воспользоваться прибором достаточно просто его включить без необходимости сложных манипуляций и изучения инструкции в несколько страниц.

Где используется шумомер

Шумомеры в первую очередь используются для контроля эффективности шумоизоляции, которая установлена в помещении. Их используют строители для определения уровня звукоизоляции объектов. На их основе можно проверить насколько соответствует применяемый строительный материал тем параметрам, которые заявлены производителем.

Существуют стандарты шума, которые допустимы в жилых помещениях в дневное и ночное время. В случае нарушения данных норм предусматривается административная ответственность в виде наложения штрафа или конфискации звукового оборудования и инструментов, издающих шум. Чтобы привлечь виновника к ответственности нужно документально зафиксировать уровень звука, который тот издает. Специально для этой цели используется шумомер, что позволяет получить точные данные в децибелах. Данное устройство имеется в распоряжении сотрудников правоохранительных органов, которые выезжают на жалобы нарушения норм проживания шумными соседями. С помощью данного оборудования можно определить, подпадают ли они под административную ответственность за нарушение правил тишины.

Также шумомеры используются для контроля условий труда на производствах, поскольку уровень шума различного оборудования ограничивается нормами трудового законодательства. Превышение допустимого звука несет опасность для здоровья человека в виде частичной потери слуха. В связи с этим контроль данного показателя является очень важным, и обойтись без применения шумомера невозможно.

Принцип действия прибора и его устройство

Шумеры имеют сравнительно несложную конструкцию, если приравнивать их к высокотехнологическим электрическим устройствам. В сердце конструкции находится обычный ненаправленный микрофон, мембрана которого колеблется от звуковых волн. Снятый с нее сигнал пропускается через несколько фильтров и поступает на индикаторный прибор, который устроен как . Уровень создаваемого шума соответствует уровню напряжения электрического тока в устройстве. В связи с этим показатель электрического сигнала полностью соответствует тому, насколько громкий выдаваемый звук. Механическая шкала или электронный циферблат выводят показатели громкости в децибелах.

Если рассматривать устройство шумомера более детально, то можно выделить его следующие составные части: ненаправленный микрофон, усилитель, фильтры, детектор, интегратор, индикатор.

Наличие фильтров позволяет отсечь от измерений показания звуковых волн, которые не воспринимаются человеческим слухом. Это дает возможность проводить объективную оценку, ориентируясь по тем показателем, которые действительно влияют на окружающих. Звуки, которые ухо не воспринимает, отсеиваются фильтрами.

Стандарты шума

Чтобы использовать шумомер и делать правильные выводы об полученных с его помощью данных, нужно ориентироваться какой шум является опасным. Если человек на протяжении длительного периода сталкивается с шумом на уровне 70-90 дБ, у него развивается заболевание центральной нервной системы. Он становится раздражительным, страдает бессонницей и нарушениями рефлексов. Такая шумность наблюдается на многих производствах, поэтому работники таких предприятий пользуются защитными наушниками

Повышение уровня звука до 100 дБ приводит к частичной потере слуха. Это отклонение может иметь как кратковременный, так и постоянный характер. Если повысить шум до 200 дБ, наблюдаются серьезные повреждения центрального уха вплоть до кровоизлияний в мозг. Такой уровень в отдельных случаях является смертельным, в лучшем случае он приводит к контузии с потерей слуха на всю жизнь.

Оптимальным уровнем шума в помещениях является показатель до 40-50 дБ в дневное время. Это безопасный уровень звука, который не несет опасности для слухового аппарата. В ночное время эта норма ниже, и составляет 30-40 дБ. Стоит учитывать, что в различных странах, и отдельных городах, верхняя планка разрешенной громкости может отличаться.

Как правильно использовать прибор

Чтобы получить точные данные важно правильно использовать шумомер. Прибор не требует особого отношения или продолжительного обучения перед применением. Достаточно просто приблизить его к источнику шума и включить питание. После этого его микрофон начнет отправлять данные на считывающий элемент. В зависимости от модели шумомера измерения могут проводиться на протяжении нескольких секунд или больше. После этого прибор останавливает фиксацию показателей и выводит уровень самой сильной звуковой волны, которая была считана на протяжении измерения.

При работе с шумомером необходимо убедиться в том, что микрофон не закрыт. Чтобы проверить, что прибор работает, его можно испытать, проведя измерения в тихом помещении. В бытовых условиях практически невозможно создать условия, в которых нет звуковых волн. В связи с этим невозможно добиться, чтобы шумомер показывал уровень громкости на минимальной границе своей чувствительности. Если в помещении действительно тихо, то выдаваемый устройством уровень шума будет приближен к минимальной отметке. Испорченный шумомер будет фиксировать слишком высокие показатели, по этому можно определить непригодность его фильтров или прочих элементов.

Мобильные приложения для измерения шума

Для современных смартфонов написаны приложения, которые после установки позволяют измерить уровень шума, используя технические возможности телефона. Они выпускаются под операционные системы Android и iOS. Стоит отметить, что подобные приложения в некоторых смыслах могут заменить бытовые шумомеры, но при этом следует понимать, что точность получаемых данных остается под сомнением. Все зависит от качества смартфона. Если рассматривать насколько точно работают подобные приложения на оборудовании фирмы Apple, то безусловно можно судить о достаточной точности. Что касается более дешевого ассортимента смартфонов, то их точность восприятия уровня звука под сомнением.

Приложениями можно пользоваться при необходимости измерить приблизительные данные об уровне громкости в пределах разговорной нормы, то есть до 60 дБ. Аппаратные возможности смартфонов и планшетов ограничены, поскольку они не предназначены для громких звуков. Задача их микрофона только в восприятии голоса человека, который обычно и звучит в интервале до 40 дБ. Волны сверх этого показателя приложениями воспринимаются с погрешностью или игнорируются, поэтому смартфоны не могут служить как прибор для снятия показателей громкости.

Классы шумомеров

Шумеры разделяются на классы в зависимости от точности выдаваемых исследований. Класс 0 охватывает самые точные лабораторные приборы, которые служат в качестве эталона для контроля прочего оборудования. Такие устройства самые дорогие и дают очень маленькую погрешность благодаря тому, что в них используются дорогостоящие материалы, сложные фильтра и прочие элементы, влияющие на точность.

Следующими по точности являются приборы 1 класса, которые применяются для санитарно-гигиенических исследований. С их помощью оцениваются условия труда. Данное оборудование работает почти с лабораторной точностью, поэтому может использоваться в качестве эталона для контроля эффективности и точности измерения приборов более низкого класса.

Устройства 2 класса применяются для снятия показателей при прохождении техосмотра транспортных средств, оценки громкости работающего оборудования, когда не идет речь об санитарных условиях труда. Приборы 3 класса является бытовыми. Именно они чаще всего встречаются в продаже и позволяют получить приблизительные показатели уровня громкости, которые могут отличаться от данных, снятых с эталонного оборудования на 1-4 дБ.

Стоит отметить, что класс оборудования влияет и на диапазон снятия измерений. Шумомер с классом 0 и 1 способен фиксировать звуковые сигналы в диапазоне частот от 20 Гц до 18 кГц. 2 класс работает в диапазоне от 20 Гц до 8 кГц. 3 класс берет звуковые волны, начиная от 30 Гц и до 8 кГц. Также устройства отличаются по децибелам, которые они могут зафиксировать. Бытовые приборы работают с диапазоном громкости от 30 до 130 дБ.

Отличия между приборами

Подбирая шумомер, стоит обратить внимание на его класс, уровень погрешности, а также диапазон чувствительности в децибелах. Что касается источника питания, то это дело вкуса. В одних случаях удобно пользоваться сетевыми приборами, которые подключаются к розетке, а в других лучше купить устройства на или . Также приборы отличаются размером экрана. Дорогие модели могут помимо цифр выводить график силы звуковых волн.

Современные устройства оснащаются прикрепленным микрофоном, и выводят данные об измерениях на цифровой экран. Они гораздо более удобные в применении, чем старые приборы оснащенные стрелкой. Более раннее оборудование имело недостаток, а именно удобство в фиксации самого высокого получаемого звукового сигнала. В результате отсутствия автоматической остановки, получаемый показатель зависит исключительно от профессионализма оператора, который занимается снятием показателей. Если моргнуть и вовремя не заметить насколько отклонилась стрелка, то можно пропустить максимальный шум и записать меньший показатель. Подобное оборудование сейчас встречается в продаже только из рук, поскольку производители отказались от такой конструкции. Подбирая прибор, стоит избегать стрелочных моделей без автоматической фиксации верхнего показателя измерения.

Реверберационная камера. Для проведения различных акустичес­ких исследований и измерений служит реверберационная камера (РК), в которой звуковые колебания эффективно отражаются от всех ограждающих поверхностей. Звуковое давление по всему объ­ему камеры достигается примерно одинаковым при равновероят­ном приходе звукового сигнала со всех направлений. Внутреннюю поверхность камеры облицовывают хорошо отражающим звук ма­териалом, коэффициент поглощения которого выбирают мини­мальным. Для достижения диффузности звукового поля выбирают специальную форму внутренних поверхностей, создают на них неро­вности, развешивают на стенах РК отражающие элементы, прини­мают меры для изоляции РК от внешних шумов и вибраций.

Основными измерениями, проводимыми в РК, являются: изме­рение звукопоглощающих свойств материалов; градуировка и ис­следование свойств микрофонов, шумомеров и другой акустической аппаратуры; исследование и измерение различных источников шу­ма, звуковых полей устройств, приборов, машин и т. д.; измерение мощности излучения громкоговорителей; исследование субъектив­ных характеристик слуха; исследование и измерение звукоизолиру­ющих свойств различных материалов при наличии двух камер с общим сообщающимся окном и т. д.

Для измерения времени реверберации после выключения источ­ника шума (звука) записывают динамику уменьшения уровня звуко­вого давления. С этой целью применяют самописцы с логариф­мической шкалой. Время стандартной реверберации определяется по формуле (3.14).

Звукомерная камера. Данная камера предназначена для проведе­ния акустических измерений с имитацией неограниченного простра­нства. В отличие от реверберационной звукомерная камера (ЗК) имеет внутреннюю поверхность, покрытую совершенным звукопо­глощающим материалом с коэффициентом поглощения, близким к единице. При измерениях на высоких частотах вместо качествен­ного заглушения (отсутствие отражений от стенок) применяют им-" пульсный метод измерений. При этом основные измерения произ-. водятся в момент прохождения прямого сигнала (до прихода от­раженного сигнала). Такой метод позволяет избежать погрешно­стей, возникающих при отражении сигнала из-за несовершенства поглощающих стенок ЗК. Для достижения качества ЗК должна иметь кроме того хорошую звукоизоляцию и виброизоляцию.

Вместо звукомерных камер в гидроакустике часто применяют камеры в виде бассейнов, в которых трудно достигнуть значения коэффициента поглощения на всех поверхностях, равного единице. В гидрокамерах, в связи с этим, тоже с успехом применяется импульсный метод измерений.

Микрофон. Микрофоном называется приемник звука (шума), в котором происходит преобразование звукового колебания воз­душной среды в электрический сигнал. Микрофон характеризуется чувствительностью, частотной зависимостью, динамическим диапа­зоном, направленностью. Помимо электроакустического преобра­зователя в комплект микрофона входят предварительные усили­тели, согласующие трансформаторы.


Верхняя граница динамического диапазона определяется уров­нем звукового давления, при котором коэффициент гармонических искажений сигнала на выходе микрофона становится равным 0,5 - 1%.

Нижняя граница динамического диапазона определяется эквива­лентным уровнем звукового давления, при котором напряжение сигнала на выходе микрофона становится примерно равным напря­жению шума, обусловленного молекулярными шумами собственно преобразователя, предварительного усилителя, тепловыми шумами резистивных элементов и т. д.

Каждый микрофон имеет мембрану (диафрагму), которая колеб­лется под действием падающего звукового поля, в результате чего происходит акустико-механическое преобразование.

По направленности микрофоны делятся на три вида: приемники давления, приемники градиентного давления и комбинированные приемники.

В приемниках давления микрофон не обладает направленно­стью, так как падающее на подвижную механическую систему звуковое излучение действует с одной стороны. Учитывая, что размеры микрофона меньше длины волны звукового колебания и результирующая сила в рассматриваемом случае не зависит от направления прихода звука, устройство не обладает направленно­стью.

Подвижная система у градиентных приемников подвергается воздействию звукового поля с двух сторон. Результирующая сила F зависит от разности звуковых давлений р на обеих акустических входах и угла падения звуковой волны относительно акустической оси преобразователя:

где d - расстояние между входами приемника; в - угол падения звуковой волны относительно акустической оси электроакустичес­кого преобразователя.

Направленность градиентных приемников является функцией cosd. Максимальное значение выходного сигнала преобразователя будет в случае осевого падения (0=0,180°). Выходной сигнал преоб­разователя будет равен нулю при 0=90°.

При объединении приемников первых двух видов или определен­ной конструкции акусто-механической системы образуется комби­нированный приемник, с помощью которого можно получать диа­граммы направленности разных видов.

С точки зрения энергетических характеристик микрофоны делят­ся на две группы. К первой группе относятся микрофоны, имеющие источник питания, обеспечивающий энергию выходного сигнала. Ко второй группе относятся микрофоны, энергия выходного сиг­нала которых определяется процессом преобразования энергии па­дающей звуковой волны.

Примером микрофонов первой группы является угольный мик­рофон, у которого электрическое сопротивление угольного порошка зависит от давления мембраны, колеблющейся под действием пада­ющей звуковой волны. Достоинством угольных микрофонов явля­ется большая мощность выходного сигнала, остальные параметры невысокие: полоса частот от 100 Гц до нескольких десятков кГц; чувствительность 200 - 400 мВ/Па при токе питания 10 - 100 мА; динамический диапазон не более 30 дБ; коэффициент гармонических искажений до 20%.

Более высокими параметрами обладают микрофоны второй группы, которые в свою очередь делятся на электродинамические, электростатические и пьезоэлектрические.

Широкое применение в акустике нашли катушечные электроди­намические микрофоны, принципиальная конструкция которых представлена на рис. 3.13. Под действием падающей звуковой вол­ны происходит колебание мембраны 2, на которой закреплена сигнальная звуковая катушка 3 в кольцевом зазоре 1 постоянного магнита 5. При этом в катушке 3 возникает э.д.с. под действием изменения магнитного поля, пронизывающего эту катушку при колебании мембраны. Таким образом, энергия падающей звуковой волны преобразуется в электрический сигнал.

Измерение шума проводят с целью определения уровней звуковых давлений на рабочих местах и оценки соответствия их действующим нормам, а также для разработки и оценки мероприятий по снижению шума. Основным прибором для измерения шума является шумомер. Диапазон измерительных уровней шума обычно составляет 30-130 дБ при частотных границах 20-16 000 Гц. Измерение шума на рабочих местах производят на уровне уха при включении не менее 2/3 установленного оборудования. Используются новые отечественные шумомеры ВШМ-003-М2, ВШМ-201, ВШМ-001 и зарубежных фирм: Robotron, Брюль и Къер. Установление шумовых характеристик стационарных машин производят следующими методами (ГОСТ 12.0.023-80): 1.Метод свободного звукового поля (в открытом пространстве, в заглушенных камерах); 2Метод отраженного звукового поля (в реверберационных камерах, в гулких помещениях; 3Метод образцового источника шума (в обычных помещениях и в реверберационных камерах) 4Измерение шумовых характеристик на расстоянии 1м от наружного контура машины (в открытом пространстве и в заглушенной камере). Наиболее точными являются первые два метода. В паспорте на шумящую машину смотрят уровень звуковой мощности и характер направленности шума.

Цель измерений - обеспечение надлежащих условий труда, получение объективных данных о машине, оценка конструктивного совершенства и качества изготовления. Измерения проводят в 3-х точках, включая рабочее место. Измерения в кабинах машин проводят при закрытых окнах и дверях.Приборная база Шумомер интегрирующий ШИ-01;Измеритель шума ВШВ-003-М3; Анализатор звука и инфразвука ОКТАВА-101А.

3. Системы водоснабжения промышленных и селитебных зон.

Селитебная территория предназначена: для размещения жилищного фонда, общественных зданий и сооружений, в том числе научно-исследовательских институтов и их комплексов, а также отдельных коммунальных и промышленных объектов, не требующих устройства санитарно-защитных зон; для устройства путей внутригородского сообщения, улиц, площадей, парков, садов, бульваров и других мест общего пользования. Производственная территория предназначена для размещения промышленных предприятий и связанных с ними объектов, комплексов научных учреждений с их опытными производствами, коммунально-складских объектов, сооружений внешнего транспорта, путей внегородского и пригородного сообщений. При прямоточном водообеспечении промышленных предприятий вода, забираемая из природного источника , после участия в технологическом процессе возвращается в водоем в виде сточной (отработанной) воды за исключением того количества, которое безвозвратно расходуется в производстве. Образующиеся на предприятии сточные воды перед сбросом в водоем должны проходить через очистные сооружения, однако не все предприятия их имеют и сточные воды могут без очистки сбрасываться в водоем. При таком способе водообеспечения производства из природных источников забираются большие количества чистой воды, которая возвращается в природные среды в несколько меньшем объеме, но содержит токсичные для гидробионтов загрязняющие вещества. Сточные воды - отработанные воды, дальнейшее использование которых либо невозможно по техническим условиям, либо нецелесообразно по технико-экономическим показателям.

Шум является одним из наиболее ярко выраженных загрязнителей окружающей среды в настоящее время. Следствием негативного шумового воздействия могут стать различные заболевания, общее недомогание, понижение работоспособности, повышение травмоопасности и несчастных случаев, нарушение слухового контроля функционирования технологического оборудования, понижение производительности труда. Сегодня контролировать уровень шума важно в самых различных отраслях человеческой жизнедеятельности, для чего используются самые различные методики и приборы.

Устройство шумомера

Измеритель шума , как правило, состоит из датчика (микрофона), усилителя, частотных фильтров и анализаторов частот, и регистрирующего прибора, в качестве которого может выступать самописец, магнитофон, а с развитием современных технологий и различные портативные устройства, такие как мобильные телефоны, смартфоны или компьютеры. Кроме этого инструмент оснащается индикатором или экраном, на котором показывается уровень измеряемой величины.

Портативные шумомеры

На рынке современного измерительного оборудования сравнительно недавно появились легкие и компактные приборы для измерения уровня шума, не требующие для работы наличия специальных навыков и умений, а также объединяющие в одном корпусе все вышеперечисленные элементы. Эти портативные приборы – шумомеры - просты в эксплуатации, и позволяют с высокой точностью определять уровень шумовой загрязненности как на рабочих местах, таки на производстве и в окружающей среде.

Преимущества современных шумомеров

Выпускаемые сегодня портативные шумомеры предназначены для комфортного ежедневного использования, и имеют широкий диапазон измерений, оснащаются жидкокристаллическим дисплеем для отображения информации, подсветкой для работы в условиях недостаточной освещенности, а также разнообразными выходами для подключения дополнительных аксессуаров, таких как усилители или рекордеры. Кроме этого некоторые модели шумомеров снабжены выходом переменного тока для подачи сигнала измеряемого шума на аналоговые регистраторы или самописцы.

Эти приборы могут работать как от батареек, причем время работы достигает нескольких суток, так и от портов USB и адаптеров переменного тока. Встроенная память позволяет запоминать результаты измерений, и в последствии, экспортировать их для составления отчетов. Множество встроенных фильтров позволяют минимизировать посторонние воздействия и достичь наивысшей точности измерений. Наличие специального гнезда позволяет установить прибор на штативе для долговременных измерений.

Выбрать и купить шумомер в Москве вы можете в магазине или на сайте РУСГЕОКОМ. Мы также осуществляем доставку в другие регионы.

Измерения шума производятся для контроля соответствия фактических уровней шума на рабочих местах допустимым по действующим нормам по методам согласно ГОСТ 12.1.050-86, ГОСТ 12.1.012-90 и МУ №1844-78.

Измерения шума должны производиться при работе не менее 2/3 установленных в данном помещении единиц технологического оборудования в наиболее часто реализуемом (характерном) режиме его работы.

Во время проведения измерений должно быть включено оборудование вентиляции, кондиционирования воздуха и другие обычно используемые в помещении устройства, являющиеся источником шума.

Уровни звука измеряют шумомерами 1 или 2-го класса точности. На предприятии применяются шумомеры типа "Октава- 101А".

Октавные уровни звукового давления измеряют шумомерами с подключенными к ним октавными электрическими фильтрами.

Измерение эквивалентных уровней звука следует производить интегрирующими шумомерами и шумоинтеграторами.

Аппаратуру калибруют до и после проведения измерения шума в соответствии с инструкциями по эксплуатации приборов.

Микрофон следует располагать на высоте 1,5 м над уровнем пола или рабочей площадки (если работа выполняется стоя) или на высоте уха человека, подвергающегося воздействию шума (если работа выполняется сидя). Микрофон должен быть ориентирован в направлении максимального уровня шума и удален не менее чем на 0,5 м от оператора, проводящего измерения.

Для оценки шума на постоянных рабочих местах измерения следует проводить в точках, соответствующих установленным постоянным местам. Для оценки шума на непостоянных рабочих местах измерения следует проводить в рабочей зоне в точке наиболее частого пребывания работающего.

При проведении измерений октавных уровней звукового давления переключатель частотной характеристики прибора устанавливают в положение "фильтр". Октавные уровни звукового давления измеряют в полосах со среднегеометрическими частотами 63-8000 Гц.

При проведении измерений уровней звука и эквивалентных уровней звука, дБА, переключатель частотной характеристики прибора устанавливают в положение "А".

При проведении измерений уровней звука и октавных уровней звукового давления постоянного шума переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней принимают по средним показателям при колебании стрелки прибора. Значения уровней звука и октавных уровней звукового давления считывают со шкалы прибора с точностью до 1 дБА, дБ.

Измерения уровней звука и октавных уровней звукового давления постоянного шума должны быть проведены в каждой точке не менее трех раз.

При проведении измерений эквивалентных уровней звука колеблющегося во времени шума для определения эквивалентного (по энергии) уровня звука переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней звука принимают по показаниям стрелки прибора в момент отсчета.

При проведении измерений максимальных уровней звука колеблющегося во времени шума переключатель временной характеристики прибора устанавливают в положение "медленно". Значения уровней звука снимают в момент максимального показания прибора.

При проведении измерений максимальных уровней звука импульсного шума переключатель временной характеристики прибора устанавливают в положение "импульс". Значения уровней принимают по максимальному показанию прибора.

Интервалы отсчета уровней звука колеблющегося во времени шума при измерениях эквивалентного уровня продолжительностью 30 мин составляют 5-6 с при общем числе отсчетов 360.

При проведении измерений эквивалентных уровней звука непостоянного шума переключатель временной характеристики прибора устанавливают в положение "медленно", измеряют уровни звука и продолжительность каждой ступени. /12/.

Измерения вибрации производятся для контроля соответствия фактических уровней вибрации на рабочих местах допустимым по действующим нормам по методам согласно ГОСТ 12.1.012-90, и МУ №3911-85.

На предприятии применяются виброметры типа "Октава-101В".

Время усреднения (интегрирования) прибора при измерении локальной вибрации должно быть не менее 1 с, а общей вибрации - не менее 10 с.

Измерения проводят непрерывно или через равные промежутки времени (дискретно).

При дискретном измерении спектров и корректированных по частоте значений интервал между снятием отсчетов должен быть для локальной вибрации не менее 1 с; для общей вибрации - не менее 10 с. Отсчет проводят в конце выбранного интервала.

Дискретные измерения начинают с проведения исходного числа наблюдений не менее 3. Необходимое число наблюдений, обеспечивающее требуемую точность результатов, определяют по итогам обработки результатов измерений.

При непрерывном измерении спектров и корректированных по частоте значений длительность измерения должна быть: для локальной вибрации - не менее 3 с; для общей вибрации - не менее 30 с.

При непрерывном измерении дозы вибрации или эквивалентного корректированного значения контролируемого параметра длительность наблюдения должна быть: для локальной вибрации - не менее 5 мин; для общей вибрации - не менее 15 мин. /11/.