Для 220 В или разноименных фаз между собой или с нулем не предусмотренные конструкцией электрической цепи или электроприборов, которое нарушает нормальную работу электросети.

Короткое замыкание возникает по причине нарушения изоляции электрических проводов, кабелей или токоведущих элементов в электроприборах, а также при механическом касании не изолированных элементов, поэтому важно всегда оголенные концы электропроводки изолировать отдельно друг от друга с использованием изоленты или электрических с электроизоляционным корпусом, т.е не проводящим электрический ток.

При возникновении короткого замыкания в электрической цепи мгновенно и многократно вырастает значение сила тока, приводящее к высокому тепловыделению, в результате которого происходит плавление электрических проводов с возникновением возгорания электропроводки и распространением пожара в помещении, где произошло КЗ.
В результате короткого замыкания нарушается нормальное функционирование не только в вашей квартире, но и у соседей- из-за падения питающего напряжения, что часто приводит к поломке электроприборов и бытовых техники.

В квартирах с 220 В возникает только однофазное замыкание (замыкание фазы на нулевой проводник или на ), а в некоторых частных домах или гаражах с трехфазным вводом на 380 Вольт- могут возникнуть гораздо более опасное двухфазное (замыкание двух фаз между собой+ на «Землю») или трёхфазное (замыкание трех фаз между собой + на «Землю»)

В электрических двигателях и аппаратах в случае поломки также возможны внутренние короткие замыкания:
Например межвитковые, которые возникают при замыкании между собой витков обмоток в статоре или ротора электродвигателя или между витками в обмотке трансформатора.

А если электроприбор имеет металлический корпус, то возможен пробой изоляции и замыкании на металлический корпус. В этом случае человека защитит от удара электрическим током только корпуса.

Внимание провода в полиэтиленовой и, особенно в резиновой оболочке больше склоны к возгоранию. Поэтому Я как профессиональный электрик много лет, занимающийся электромонтажом в Минске настоятельно рекомендую использовать в квартирах, домах, гаражах и т. для прокладки скрыто под штукатуркой кабель марки ВВГ Нг, с не горючей изоляцией, а открыто по несгораемому основанию более дорогой кабель- ВВГ Нг Ls, который даже не дымит при КЗ.

Перегрузка электросети в доме гараже или квартире нередко встречается в быту и также очень опасна и является аварийным случаем. И как показала практика более опасна, чем токи КЗ. Потому что электропроводка надежно защищена или .

Причиной возникновения перегрузки служит подключение, включение большого количества электроприборов на одну группу электрических розеток или повреждения потребителей электричества, при и котором суммарный ток, проходящий по электрическому кабелю или проводам превышает номинальное значение, на которое они рассчитаны. Для дома или квартиры, где в основном проложены кабеля или провода сечением 1.5 квадратных миллиметров номинальный ток должен быть не выше 16 Ампер или не более 3.5 Киловатт.

Важно знать и применять в практике только выключатели или розетки для подключения электроосвещения или электрооборудования с не менее значениями напряжения и тока, указанными на корпусе электрической розетки или выключателя. Например, на розетке написано «10 А; 250 В» , что означает она рассчитана на однофазную сеть 220 Вольт, а максимальное значение тока, проходящего через розетку, не должно быть выше 10 Ампер или, примерно по мощности не более 2 Киловатт. В такую розетку нельзя включать мощный электроприбор например с мощностью 2.5-3 Киловатта, что приведет к выгоранию контактов розетки.

Короткое замыкание представляет собой электрическое соединение различных фаз, которые являются нетипичными для нормального режима работы. Вследствие этого в проводнике резко увеличивается сила тока, что приводит к неблагоприятным последствиям. Рассмотрим, что такое короткое замыкание, классификацию явления, потенциальные угрозы и способы предотвращения КЗ.

КЗ делится в зависимости от фазы сети. В однофазной системе выделяют следующую классификацию:

  • фаза и ноль – наиболее распространенный тип в быту. Замыкание случается, если использовать электрические приборы, которые не рассчитаны на стандартную величину токов или если в розетке находится плохой контакт. В результате этого наблюдается перегрев, и изоляция проводов нарушается;
  • фаза и заземление – ситуация, в которой фазный провод начинает контактировать с заземленным корпусом другого оборудования.

КЗ может происходить в трехфазной системе:

  • однофазное – рассмотрено выше;
  • двухфазное – в процессе принимает участие две системы. Подобная ситуация часто случается с воздушными линиями электропередач. Чаще всего это происходит во время сильного ветра, когда линии проводов пересекаются между собой и образуют замыкание;
  • трехфазное и земля – одновременный контакт трех системы с землей;
  • трехфазное – одновременный контакт трех системы, спровоцированный соединением между собой токопроводящего предмета.

Основные причины, провоцирующие возникновение КЗ:

  • нарушение целостности изоляции, что может возникать вследствие износа электрооборудования, в связи с загрязнением поверхности приборов, а так же механическими повреждениями;
  • механическое нарушение целостности элементов сети (к примеру, обрыв линии передачи);
  • скачки напряжения – пробой изоляции проводника, что приводит к развитию утечки тока и созданию дугового кратковременного разряда;
  • удар молнии;
  • попадание животных и птиц на токоведущие части;
  • человеческий фактор – ошибки персонала при проведении работ по переключению;
  • преднамеренное КЗ с использованием короткозамыкателей – используются с целью экономии выключателей. Сегодня данная технология не применяется и является запрещенной.

Какие могут быть последствия?

Во время замыканий наблюдается резкое увеличение силы тока, что приводит к расплавлению металлов. «Брызги» могут разноситься во все стороны, приводя к воспламенению предметов вокруг и пожарам. Это особенно опасно для домашних условий, так как КЗ может стать причиной потери имущества и жилья. Последствиями на предприятиях является аварийная ситуация, повреждение техники и риск того, что могут пострадать люди.

Замыкание, в зависимости от места его образования, может привести к системой аварии, последствиями которой станет экономический и технический урон. Оборудование, которое находилось под действием усиленной силы тока, выходит из стоя или получает серьезные повреждения.

Еще одним последствием замыкания является ухудшение условий работы персонала и потребителей – резкое понижение давления приводит к остановке производственных мощностей и экономическому ущербу. Наибольший урон наносится тому месту, в котором непосредственно возникло замыкание.

Способы защиты

Наиболее надежным и действенным способом предотвращения КЗ является установка автоматических выключателей. Альтернативой служат плавкие предохранители. Автомат своевременно улавливает возникновение замыкания и отключает питание, благодаря чему возникновение аварийной ситуации является невозможным.

Прочие меры предосторожности:

  • регулярная ревизия электропроводных каналов – визуальное определение слабых мест кабеля, где изнашивается изоляция и своевременное устранение проблемы;
  • использование электрических реакторов, которые регулируют подачу тока;
  • использование специальных электроцепей, которые в случае необходимости отключают секционные выключатели;
  • использование понижающих трансформаторов, которые оснащены расщепляемой обмоткой низкого напряжения.

Совет: для домашнего использования рекомендуется устанавливать автоматические выключатели. Они рассчитаны на определенный ток, после превышения величины которого, разрывается цепь. Прочие меры в основном указаны для промышленного использования.

В чем заключается угроза КЗ?

Замыкание в первую очередь представляет угрозу здоровью и жизни человека. Это связано с пожарной опасностью: возгорание изоляции проводов, воспламенение окружающих предметов, способность изоляции распространять горение. Так же изменение силы тока может быть губительным для используемых устройств и приборов, приводя к катастрофическим последствиям. КЗ может стать причиной экономического убытка Поэтому важно использовать меры профилактики возникновения явления и прибегать к установке методов защиты.

Всем привет. Я очень рад, что вы зашли на мой сайт. И сегодня, мы с вами, поговорим о том, что такое короткое замыкание и какие замыкания бывают.

Короткое замыкание – это соединение (соприкосновение) двух или нескольких точек (проводников) электрической цепи с разными потенциальными значениями.

Разные потенциалы – это когда фаза и ноль в сети переменного тока, или плюс и минус в сети постоянного тока.

Теперь давайте рассмотрим, какие бывают виды короткого замыкания.

В однофазной сети может быть только два вида короткого замыкания:

1. фаза и ноль – это вид замыкания очень часто бывает в простых бытовых условиях. К примеру с наступление зимы становится холодно, и многие люди пытаются согреться с помощью электрических обогревателей.

Но мало кто обращает внимание на розетки, в которые включают эти самые обогреватели. Очень часто бывает, что розетки не рассчитаны на токи, которые потребляют обогреватели, или же часто в розетках может быть плохой контакт.

Из-за этого розетки и вилочки начинают греться. В следствии длительных нагревов разрушается изоляция проводов. И в один прекрасный момент два, уже оголевших, проводника могут соприкоснуться, и получится короткое замыкание.

2. фаза и заземление – это когда фазный провод, каким-то образом начинает контактировать с заземлённым корпусом любого электрического оборудования. Будь то электрический водонагреватель, светильник, станок и так далее.

Бывает ещё такое, что корпус может быть занулённым, тогда такое замыкание можно отнести к первому случаю.

А вот в ситуаций, при которых возникает короткое замыкание, может быть намного больше:

1. однофазное замыкание – фаза и ноль. Этот вид я уже описывал выше, так что переходим к следующему.

2. двухфазное – это когда соединились между собой две фазы. Часто случается на воздушных линиях электропередач. Такое явление, наверное, видел каждый человек в своей жизни. Когда на улице сильный ветер и начинает расшатывать провода, и получает не большой салют. На промышленных предприятиях такое замыкание часто случается в силовых цепях.

3. двухфазное и земля – такое, конечно, реже бывает, но всё равно случается. Пример, когда две фазы могут соединиться между собой, и одновременно контактировать ещё и с землёй.

4. трёхфазное – это когда все три фазы каким-то образом замкнулись между собой. Такое замыкание получится при падении или прикосновении, какого-то токопроводящего предмета ко всем трём фазам одновременно.

Какие могут быть последствия от токов короткого замыкания.

При коротком замыкании мгновенно возрастает ток, что приводит сильному нагреву и расплавлению металлов. Брызги этого металла разлетаются во все стороны, и всё это сопровождается яркой вспышкой и огнём. Что легко может привести к пожару и к очень серьёзным последствиям.

В обычных домашних условиях, если не правильно подобрать защиту от короткого замыкания, то реально можно потерять очень многое. Начиная от жилища и мебели, и заканчиваю своей и жизнью людей живущих с вами под одной крышей.

На предприятиях токи короткого замыкания могут привести к аварийным ситуациям, повреждению оборудования, ну и от этого так же могут пострадать люди. Но на предприятиях обычно используют несколько защит сразу, что практически исключает возникновению коротких замыканий.

Вот и всё что хотел сказать. Если у вас есть какие-то вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях и подписывайтесь на обновления. До новых встреч.

С уважением Александр!

Рассмотрим особый случай параллельного соединения проводников - так называемое короткое замыкание. Им называется параллельное включение в цепь проводника с очень маленьким сопротивлением. Рассмотрим пример.
Пусть лампы и выключатель соединены так, как показано на схемах. Обратите внимание, что выключатель и вторая лампа соединены параллельно, кроме того, замкнутый выключатель на правой схеме - проводник с очень маленьким сопротивлением. Следовательно, согласно определению, на правой схеме существует короткое замыкание лампы.

Пусть, например, напряжение источника тока подобрано так, что при разомкнутом выключателе обе лампы светятся не очень ярко - в полнакала (поэтому на первой схеме они наполовину закрашены). Если же выключатель замкнуть, то левая лампа будет гореть ярко, а правая лампа вообще погаснет. Таким образом, увеличение яркости левой лампы указывает нам, что при существовании в цепи короткого замыкания сила тока резко возрастает. Согласно закону Джоуля-Ленца, возрастание силы тока может привести к перегреванию проводов и возникновению пожара.
Объясним, почему левая лампа загорается ярче. Вспомним, что при параллельном соединении проводников их общее сопротивление становится меньше меньшего из них, то есть даже меньше, чем сопротивление выключателя (у которого оно и так почти равно нулю). Согласно закону Ома, уменьшение сопротивления приводит к возрастанию силы тока. А возрастание тока, согласно закону Джоуля-Ленца, приводит к более сильному накалу спирали левой лампы.
Объясним теперь, почему гаснет правая лампа. Поскольку при параллельном соединении проводников напряжение на каждом из них одинаково, то напряжения на правой лампе и на выключателе одинаковы. По закону Ома U=I·R. Как мы выяснили в предыдущем абзаце, сопротивление этого соединения почти равно нулю, то есть R»0. Подставляя ноль в формулу, получим: U=I·0=0. То есть, напряжение на выключателе и лампе равно нулю (точнее, очень маленькое). Такого напряжения явно недостаточно, чтобы поддерживать свечение лампы, поэтому она гаснет.

Для защиты электроприборов от короткого замыкания применяют предохранители. Их назначение - отключать электроэнергию в случае, если ток возрастает больше допустимой величины. На рисунке справа вы видите автоматический предохранитель с винтовым цоколем как у лампы. Такие предохранители (в просторечии «пробки») вворачивают в специальные патроны, которые укрепляют на стене.
Существуют также плавкие предохранители. В них основной деталью является тонкая (диаметром около 0,1 мм) проволочка из олова или свинца (см. рисунок ниже). В случае сильного возрастания тока она практически мгновенно плавится, и цепь размыкается, прерывая ток. В отличие от «многоразовых» автоматических предохранителей, плавкие предохранители являются одноразовыми электроприборами.

Если предположить, что провода, подводящие ток к квартирной проводке, сделаны из алюминия и имеют диаметр 1 мм, то площадь сечения свинцовой проволочки окажется в 100 раз меньше. Кроме того, заглянув в таблицу, мы увидим, что удельное сопротивление свинца примерно в 10 раз больше, чем у алюминия. Следовательно, сопротивление проволочки примерно в 1000 раз больше сопротивления алюминиевого провода такой же длины.
Поскольку провод и предохранитель (то есть проволочка внутри него) соединены последовательно, то сила тока в них одинакова. Так как по закону Джоуля-Ленца Q=I2Rt, следовательно, количество теплоты, выделяющееся в проволочке, в каждый момент времени в 1000 раз больше, чем в проводе. Именно поэтому проволочка плавится, а электропроводка остаётся в сохранности. В настоящее время плавкие предохранители практически не применяются в технике, уступив место автоматическим.

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет - она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I - величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? - спросит настырный оппонент, - Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U - та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R - электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников - малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P - мощность, Ватт или Вольт-Ампер;

U - напряжение, Вольт;

I - ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) - это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки - страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки - емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

I к.з. - величина тока короткого замыкания, А;

Uph - фазное напряжение, В;

Zn - полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt - полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина - соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание - явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем - к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.