Привет всем читателям сайт! Друзья, я давно хотел с Вами поговорить о том, как создать на компьютере RAID массив (избыточный массив независимых дисков). Несмотря на кажущуюся сложность вопроса, на самом деле всё очень просто и я уверен, многие читатели сразу после прочтения этой статьи возьмут на вооружение и будут с удовольствием пользоваться данной очень полезной, связанной с безопасностью ваших данных технологией.

Как создать RAID массив и зачем он нужен

Не секрет, что наша информация на компьютере практически ничем не застрахована и находится на простом жёстком диске, который имеет свойство ломаться в самый неподходящий момент. Уже давно признан факт, что жёсткий диск самое слабое и ненадёжное место в нашем системном блоке, так как имеет механические части. Те пользователи, которые когда-либо теряли важные данные (я в том числе) из-за выхода из строя "винта", погоревав некоторое время задаются вопросом, как избежать подобной неприятности в будущем и первое, что приходит на ум, это создание RAID-массива .

Весь смысл избыточного массива независимых дисков в том, чтобы сберечь Ваши файлы на жёстком диске в случае полной поломки этого диска! Как это сделать, – спросите вы, да очень просто, нужно всего лишь два (можно даже разных в объёме) жёстких диска.

В сегодняшней статье мы с Вами с помощью операционной системы Windows 8.1 создадим из двух чистых жёстких дисков самый простой и популярный RAID 1 массив , его ещё называют "Зеркалирование" (mirroring). Смысл "зеркала" в том, что информация на обоих дисках дублируется (записывается параллельно) и два винчестера представляют из себя точные копии друг друга.

Если вы скопировали файл на первый жёсткий диск, то на втором появляется точно такой же файл и как вы уже поняли, если один жёсткий диск выходит из строя, то все ваши данные останутся целыми на втором винчестере (зеркале). Вероятность поломки сразу двух жёстких дисков ничтожна мала.

Единственный минус RAID 1 массива в том, что купить нужно два жёстких диска, а работать они будут как один единственный, то есть, если вы установите в системный блок два винчестера в объёме по 500 ГБ, то доступно для хранения файлов будет всё те же 500 ГБ, а не 1ТБ.

Если один жёсткий диск из двух выходит из строя, вы просто берёте и меняете его, добавляя как зеркало к уже установленному винчестеру с данными и всё.

Лично я, в течении многих лет, использую на работе RAID 1 массив из двух жёстких дисков по 1 ТБ и год назад произошла неприятность, один "хард" приказал долго жить, пришлось его тут же заменить, тогда я с ужасом подумал, чтобы было, не окажись у меня RAID-массива, небольшой холодок пробежал по спине, ведь пропали бы данные накопленные за несколько лет работы, а так, я просто заменил неисправный "терабайтник" и продолжил работу. Кстати, дома у меня тоже небольшой RAID-массив из двух винчестеров по 500 ГБ.

Создание программного RAID 1 массива из двух пустых жёстких дисков средствами Windows 8.1

Первым делом устанавливаем в наш системный блок два чистых жёстких диска. Для примера, я возьму два жёстких диска объёмом 250 ГБ.

Что делать, если размер винчестеров разный или на одном жёстком диске у вас уже находится информация, читаем в следующей нашей статье .

Открываем Управление дисками

Диск 0 - твердотельный накопитель SSD с установленной операционной системой Windows 8.1 на разделе (C:).

Диск 1 и Диск 2 - жёсткие диски объёмом 250 ГБ из которых мы соберём RAID 1 массив.

Щёлкаем правой мышью на любом жёстком диске и выбираем «Создать зеркальный том»

Добавляем диск, который будет зеркалом для выбранного ранее диска. Первым зеркальным томом мы выбрали Диск 1, значит в левой части выбираем Диск 2 и нажимаем на кнопку «Добавить».

Выбираем букву программного RAID 1 массива, я оставляю букву (D:). Далее

Отмечаем галочкой пункт Быстрое форматирование и жмём Далее.

В управлении дисками зеркальные тома обозначаются кроваво-красным цветом и имеют одну букву диска, в нашем случае (D:). Скопируйте на любой диск какие-либо файлы и они сразу появятся на другом диске.

В окне "Этот компьютер", программный RAID 1 массив отображается как один диск.

Если один из двух жёстких дисков выйдет из строя, то в управлении дисками RAID-массив будет помечен ошибкой "Отказавшая избыточность", но на втором жёстком диске все данные будут в сохранности.

RAID (англ. redundant array of independent disks - избыточный массив независимых жёстких дисков) - массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации. Изначально, подобные массивы строились в качестве резерва носителям на оперативной (RAM) памяти, которая в то время была дорогой. Со временем, аббревиатура приобрела второе значение – массив уже был из независимых дисков, подразумевая использование нескольких дисков, а не разделов одного диска, а также дороговизну (теперь уже относительно просто нескольких дисков) оборудования, необходимого для построения этого самого массива.

Рассмотрим, какие бывают RAID массивы. Сперва рассмотрим уровни, которые были представлены учёными из Беркли, потом их комбинации и необычные режимы. Стоит заметить, что если используются диски разного размера (что не рекомендуется), то работать они буду по объёму наименьшего. Лишний объем больших дисков просто будет недоступен.

RAID 0. Дисковый массив с чередованием без отказоустойчивости/чётности (Stripe)

Является массивом, где данные разбиваются на блоки (размер блока можно задавать при создании массива) и затем записываются на отдельные диски. В простейшем случае – есть два диска, один блок пишется на первый диск, другой на второй, затем опять на первый и так далее. Также этот режим называется «чередование», поскольку при записи блоков данных чередуются диски, на которые осуществляется запись. Соответственно, читаются блоки тоже поочерёдно. Таким образом, происходит параллельное выполнение операций ввода/вывода, что приводит к большей производительности. Если раньше за единицу времени мы могли считать один блок, то теперь можем сделать это сразу с нескольких дисков. Основным плюсом данного режима как раз и является высокая скорость передачи данных.

Однако чудес не бывает, а если бывают, то нечасто. Производительность растёт всё же не в N раз (N – число дисков), а меньше. В первую очередь, увеличивается в N раз время доступа к диску, и без того высокое относительно других подсистем компьютера. Качество контроллера оказывает не меньшее влияние. Если он не самый лучший, то скорость может едва заметно отличаться от скорости одного диска. Ну и немалое влияние оказывает интерфейс, которым RAID контроллер соединён с остальной системой. Всё это может привести не только к меньшему, чем N увеличению скорости линейного чтения, но и к пределу количества дисков, установка выше которого прироста давать уже не будет вовсе. Или, наоборот, будет слегка снижать скорость. В реальных задачах, с большим числом запросов шанс столкнуться с этим явлением минимален, ибо скорость весьма сильно упирается в сам жёсткий диск и его возможности.

Как видно, в этом режиме избыточности нет как таковой. Используется всё дисковое пространство. Однако, если один из дисков выходит из строя, то, очевидно, теряется вся информация.

RAID 1. Зеркалирование (Mirror)

Суть данного режима RAID сводится к созданию копии (зеркала) диска с целью повышения отказоустойчивости. Если один диск выходит из строя, то работа не прекращается, а продолжается, но уже с одним диском. Для этого режима требуется чётное число дисков. Идея этого метода близка к резервному копированию, но всё происходит «на лету», равно как и восстановление после сбоя (что порой весьма важно) и нет необходимости тратить время на это.

Минусы – высокая избыточность, так как нужно вдвое больше дисков для создания такого массива. Ещё одним минусом является то, что отсутствует какой-либо прирост производительности – ведь на второй диск просто пишется копия данных первого.

RAID 2 Массив с использованием ошибкоустойчивого кода Хемминга.

Данный код позволяет исправлять и обнаруживать двойные ошибки. Активно используется в памяти с коррекцией ошибок (ECC). В этом режиме диски разбиваются на две группы – одна часть используется для хранения данных и работает аналогично RAID 0, разбивая блоки данных по разным дискам; вторая часть используется для хранения ECC кодов.

Из плюсов можно выделить исправление ошибок «на лету», высокую скорость потоковой передачи данных.

Главным минусом является высокая избыточность (при малом числе дисков она почти двойная, n-1). При увеличении числа дисков удельное число дисков хранения ECC кодов становится меньше (снижается удельная избыточность). Вторым минусом является низкая скорость работы с мелкими файлами. Из-за громоздкости и высокой избыточности с малым числом дисков, данный уровень RAID в данное время не используется, сдав позиции более высоким уровням.

RAID 3. Отказоустойчивый массив с битовым чередованием и чётностью.

Данный режим записывает данные по блокам на разные диски, как RAID 0, но использует ещё один диск для хранения четности. Таким образом, избыточность намного ниже, чем в RAID 2 и составляет всего один диск. В случае сбоя одного диска, скорость практически не меняется.

Из основных минусов надо отметить низкую скорость при работе с мелкими файлами и множеством запросов. Связано это с тем, что все контрольные коды хранятся на одном диске и при операциях ввода/вывода их необходимо переписывать. Скорость этого диска и ограничивает скорость работы всего массива. Биты чётности пишутся только при записи данных. А при чтении – они проверяются. По причине этого наблюдается дисбаланс в скорости чтения/записи. Одиночное чтение небольших файлов также характеризуется невысокой скоростью, что связано с невозможностью параллельного доступа с независимых дисков, когда разные диски параллельно выполняют запросы.

RAID 4

Данные записываются блоками на разные диски, один диск используется для хранения битов чётности. Отличие от RAID 3 заключается в том, что блоки разбиваются не по битам и байтам, а по секторам. Преимущества заключаются в высокой скорости передачи при работе с большими файлами. Также высока скорость работы с большим числом запросов на чтение. Из недостатков можно отметить доставшиеся от RAID 3 – дисбаланс в скорости операций чтения/записи и существование условий, затрудняющих параллельный доступ к данным.

RAID 5. Дисковый массив с чередованием и распределённой чётностью.

Метод похож на предыдущий, но в нём для битов чётности выделяется не отдельный диск, а эта информация распределяется между всеми дисками. То есть, если используется N дисков, то будет доступен объём N-1 диска. Объём одного будет выделен под биты чётности, как и в RAID 3,4. Но они хранятся не на отдельном диске, а разделены. На каждом диске есть (N-1)/N объёма информации и 1/N объёма заполнено битами чётности. Если в массиве выходит из строя один диск, то он остаётся работоспособным (данные, хранившиеся на нём, вычисляются на основе чётности и данных других дисков «на лету»). То есть, сбой проходит прозрачно для пользователя и порой даже с минимальным падением производительности (зависит от вычислительной способности RAID контроллера). Из преимуществ отметим высокие скорости чтения и записи данных, как при больших объёмах, так и при большом числе запросов. Недостатки – сложное восстановление данных и более низкая, чем в RAID 4 скорость чтения.

RAID 6. Дисковый массив с чередованием и двойной распределённой чётностью.

Всё отличие сводится к тому, что используются две схемы чётности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи является чрезвычайно низкой.

Комбинированные (nested) уровни RAID.

Поскольку массивы RAID являются прозрачными для ОС, то вскоре пришло время и созданию массивов, элементами которых являются не диски, а массивы других уровней. Обычно они пишутся через плюс. Первая цифра означает то, массивы какого уровня входят в качестве элементов, а вторая цифра – то, какую организацию имеет верхний уровень, который объединяет элементы.

RAID 0+1

Комбинация, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объёма дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.

RAID 1+0

Также известен, как RAID 10. Является страйпом зеркал, то есть, массивом RAID 0, построенным из RAID 1 массивов. Практически аналогичен предыдущему решению.

RAID 0+3

Массив с выделенной чётностью над чередованием. Является массивом 3-го уровня, в котором данные блоками разбиваются и пишутся на массивы RAID 0. Комбинации, кроме простейших 0+1 и 1+0 требуют специализированных контроллеров, зачастую достаточно дорогих. Надёжность данного вида ниже, чем у следующего варианта.

RAID 3+0

Также известен, как RAID 30. Является страйпом (массивом RAID 0) из массивов RAID 3. Обладает весьма высокой скорость передачи данных, вкупе с неплохой отказоустойчивостью. Данные сначала разделяются на блоки (как в RAID 0) и попадают на массивы-элементы. Там они опять делятся на блоки, считается их чётность, блоки пишутся на все диски кроме одного, на который пишутся биты чётности. В данном случае, из строя может выйти один из дисков каждого из входящих в состав RAID 3 массива.

RAID 5+0 (50)

Создаётся путём объединения массивов RAID 5 в массив RAID 0. Обладает высокой скоростью передачи данных и обработки запросов. Обладает средней скоростью восстановления данных и хорошей стойкостью при отказе. Комбинация RAID 0+5 также существует, но больше теоретически, так как даёт слишком мало преимуществ.

RAID 5+1 (51)

Сочетание зеркалирования и чередования с распределённой четностью. Также вариантом является RAID 15 (1+5). Обладает очень высокой отказоустойчивостью. Массив 1+5 способен работать при отказе трех дисков, а 5+1 – пяти из восьми дисков.

RAID 6+0 (60)

Чередование с двойной распределённой четностью. Иными словами – страйп из RAID 6. Как уже говорилось применительно к RAID 0+5, RAID 6 из страйпов не получил распространения (0+6). Подобные приёмы (страйп из массивов с четностью) позволяют повысить скорость работы массива. Ещё одним преимуществом является то, что так можно легко повысить объём, не усложняя ситуации с задержками, необходимыми на вычисление и запись большего числа битов четности.

RAID 100 (10+0)

RAID 100, также пишущийся как RAID 10+0, является страйпом из RAID 10. По своей сути, он схож с более широким RAID 10 массивом, где используется вдвое больше дисков. Но именно такой «трехэтажной» структуре есть своё объяснение. Чаще всего RAID 10 делают аппаратным, то есть силами контроллера, а уже страйп из них делают программно. К такой уловке прибегают, чтобы избежать проблемы, о которой говорилось в начале статьи – контроллеры имеют свои ограничения по масштабируемости и если воткнуть в один контроллер двойное число дисков, прироста можно при некоторых условиях вообще не увидеть. Программный же RAID 0 позволяет создать его на базе двух контроллеров, каждый из которых держит на борту RAID 10. Так, мы избегаем «бутылочного горлышка» в лице контроллера. Ещё одним полезным моментом является обход проблемы с максимальным числом разъёмов на одном контроллере – удваивая их число, мы удваиваем и число доступных разъёмов.

Нестандартные режимы RAID

Двойная четность

Распространённым дополнением к перечисленным уровням RAID является двойная четность, порой реализованная и потому называемая «диагональной четностью». Двойная четность уже внедрена в RAID 6. Но, в отличие от нее, четность считается над другими блоками данных. Недавно спецификация RAID 6 была расширена, потому диагональная четность может считаться RAID 6. Если для RAID 6 четность считается как результат сложения по модулю 2 битов, идущих в ряд (то есть сумма первого бита на первом диске, первого бита на втором и т.д.), то в диагональной четности идет смещение. Работа в режиме сбоя дисков не рекомендуется (ввиду сложности вычисления утраченных битов из контрольных сумм).

Является разработкой NetApp RAID массива с двойной четностью и подпадает под обновленное определение RAID 6. Использует отличную от классической RAID 6 реализации схему записи данных. Запись ведется сначала на кеш NVRAM, снабжённый источником бесперебойного питания, чтобы предотвратить потерю данных при отключении электричества. Программное обеспечение контроллера, по возможности, пишет только цельные блоки на диски. Такая схема предоставляет большую защиту, чем RAID 1 и имеет более высокую скорость работы, нежели обычный RAID 6.

RAID 1,5

Был предложен компанией Highpoint, однако теперь применяется очень часто в контроллерах RAID 1, без каких-либо выделений данной особенности. Суть сводится к простой оптимизации – данные пишутся как на обычный массив RAID 1 (чем 1,5 по сути и является), а читают данные с чередованием с двух дисков (как в RAID 0). В конкретной реализации от Highpoint, применявшейся на платах DFI серии LanParty на чипсете nForce 2, прирост был едва заметным, а порой и нулевым. Связано это, вероятно, с невысокой скоростью контроллеров данного производителя в целом в то время.

Комбинирует в себе RAID 0 и RAID 1. Создаётся минимум на трёх дисках. Данные пишутся с чередованием на три диска, а со сдвигом на 1 диск пишется их копия. Если пишется один блок на три диска, то копия первой части пишется на второй диск, второй части – на третий диск. При использовании четного числа дисков лучше, конечно, использовать RAID 10.

Обычно при построении RAID 5 один диск оставляют свободным (spare), чтобы в случае сбоя система сразу стала перестраивать (rebuild) массив. При обычной работе этот диск работает вхолостую. Система RAID 5E подразумевает использование этого диска в качестве элемента массива. А объём этого свободного диска распределяется по всему массиву и находится в конце дисков. Минимальное число дисков – 4 штуки. Доступный объём равен n-2, объём одного диска используется (будучи распределенным между всеми) для четности, объем еще одного – свободный. При выходе из строя диска происходит сжатие массива до 3-х дисков (на примере минимального числа) заполнением свободного пространства. Получается обычный массив RAID 5, устойчивый к отказу ещё одного диска. При подключении нового диска, массив расжимается и занимает вновь все диски. Стоит отметить, что во время сжатия и распаковки диск не является устойчивым к выходу еще одного диска. Также он недоступен для чтения/записи в это время. Основное преимущество – большая скорость работы, поскольку чередование происходит на большем числе дисков. Минус – что нельзя данный диск назначать сразу к нескольким массивам, что возможно в простом массиве RAID 5.

RAID 5EE

Отличается от предыдущего только тем, что области свободного места на дисках не зарезервированы одним куском в конце диска, а чередуются блоками с битами четности. Такая технология значительно ускоряет восстановление после сбоя системы. Блоки можно записать прямо на свободное место, без необходимости перемещения по диску.

Аналогично с RAID 5E использует дополнительный диск для повышения скорости работы и распределения нагрузки. Свободное место разделяется между другими дисками и находится в конце дисков.

Данная технология является зарегистрированной торговой маркой фирмы Storage Computer Corporation. Массив, основывающийся на RAID 3, 4, оптимизированный для повышения производительности. Основное преимущество заключается в использовании кеширования операций чтения/записи. Запросы на передачу данных осуществляются асинхронно. При построении используются диски SCSI. Скорость выше решений RAID 3,4 приблизительно в 1,5-6 раз.

Intel Matrix RAID

Является технологией, представленной Intel в южных мостах, начиная с ICH6R. Суть сводится к возможности комбинации RAID массивов разных уровней на разделах дисков, а не на отдельных дисках. Скажем, на двух дисках можно организовать по два раздела, два из них будут хранить на себе операционную систему на массиве RAID 0, а другие два – работая в режиме RAID 1 – хранить копии документов.

Linux MD RAID 10

Это RAID драйвер ядра Linux, предоставляющий возможность создания более продвинутой версии RAID 10. Так, если для RAID 10 существовало ограничение в виде чётного числа дисков, то этот драйвер может работать и с нечетным. Принцип для трех дисков будет тем же, что в RAID 1E, когда происходит чередование дисков по очереди для создания копии и чередования блоков, как в RAID 0. Для четырех дисков это будет эквивалентно обычному RAID 10. Помимо этого, можно задавать, на какой области диска будет храниться копия. Скажем, оригинал будет в первой половине первого диска, а его копия – во второй половине второго. Со второй половиной данных – наоборот. Данные можно дублировать несколько раз. Хранение копий на разных частях диска позволяет достичь большей скорости доступа в результате разнородности жесткого диска (скорость доступа меняется в зависимости от расположения данных на пластине, обычно разница составляет два раза).

Разработан компанией Kaleidescape для использования в своих медиа устройствах. Схож с RAID 4 с использованием двойной четности, но использует другой метод отказоустойчивости. Пользователь может легко расширять массив, просто добавляя диски, причём в случае, если он содержит данные, данные будут просто добавлены в него, вместо удаления, как это требуется обычно.

Разработка компании Sun. Самой большой проблемой RAID 5 является потеря информации в результате отключения питания, когда информация из дискового кеша (который является энергозависимой памятью, то есть не хранит данные без электричества) не успела сохраниться на магнитные пластины. Такое несовпадение информации в кеше и на диске называют некогерентностью. Сама организация массива связана с файловой системой Sun Solaris – ZFS. Используется принудительная запись содержимого кеш-памяти дисков, восстанавливать можно не только весь диск, но и блок «на лету», когда контрольная сумма не совпала. Ещё немаловажным аспектом является идеология ZFS – она не меняет данные при необходимости. Вместо этого она пишет обновлённые данные и потом, убедившись, что операция прошла уже удачно, меняет указатель на них. Таким образом, удаётся избежать потери данных при модификации. Мелкие файлы дублируются вместо создания контрольных сумм. Это тоже делается силами файловой системы, поскольку она знакома со структурой данных (массивом RAID) и может выделять место под эти цели. Существует также RAID-Z2, которая, подобно RAID 6 способна выдержать отказ двух дисков с помощью использования двух контрольных сумм.

То, что не является RAID в принципе, но часто вместе с ним употребляется. Дословно переводится как «просто набор дисков» (just a bunch of disks) Технология объединяет все диски, установленные в системе в один большой логический диск. То есть, вместо трех дисков будет виден один крупный. Используется весь суммарный объем дисков. Ускорения ни надежности, ни производительности нет.

Drive Extender

Функция, заложенная в Window Home Server. Совмещает в себе JBOD и RAID 1. При необходимости создания копии, она не дублирует сразу файл, а ставит NTFS разделе метку, указывающую на данные. При простое система копирует файл так, чтобы место на дисках было максимальным (использовать можно диски разного объема). Позволяет достичь многих преимуществ RAID – отказоустойчивости и возможности простой замены вышедшего из строя диска и его восстановления в фоновом режиме, прозрачности местонахождения файла (вне зависимости от того, на каком диске он находится). Также можно проводить параллельный доступ с разных дисков с помощью вышеуказанных меток, получая сходную с RAID 0 производительность.

Разработана компанией Lime technology LLC. Эта схема отличается от обычных RAID массивов тем, что позволяет смешивать диски SATA и PATA в одном массиве и диски разных объема и скорости. Для контрольной суммы (четности) используется выделенный диск. Данные не чередуются между дисками. В случае отказа одного диска, теряются только файлы, на нём хранящиеся. Однако, с помощью четности они могут быть восстановлены. UNRAID внедрен как добавление к Linux MD (multidisk).

Большинство видов RAID массивов не получило распространения, часть используется в узких сферах применения. Наиболее массовыми, от простых пользователей до серверов начального уровня стали RAID 0, 1, 0+1/10, 5 и 6. Нужен ли вам рейд-массив для ваших задач – решать вам. Теперь вы знаете, в чём их отличия друг от друга.

Сегодня мы поговорим о RAID-массивах . Разберемся, что это такое, зачем это нам надо, какое оно бывает и как все это великолепие использовать на практике.

Итак, по порядку: что такое RAID-массив или просто RAID ? Расшифровывается эта аббревиатура как "Redundant Array of Independent Disks" или "избыточный (резервный) массив независимых дисков". Говоря по-простому, RAID-массив это совокупность физических дисков, объединенных в один логический.

Обычно бывает наоборот - в системный блок установлен один физический диск, который мы разбиваем на несколько логических. Здесь обратная ситуация - несколько жестких дисков сначала объединяются в один, а потом операционной системой воспринимаются как один. Т.е. ОС свято уверена, что у нее физически только один диск.

RAID-массивы бывают аппаратные и программные.

Аппаратные RAID-массивы создаются до загрузки ОС посредством специальных утилит, зашитых в RAID-контроллер - нечто вроде BIOS. В результате создания такого RAID-массива уже на стадии инсталляции ОС, дистрибутив "видит" один диск.

Программные RAID-массивы создаются средствами ОС. Т.е. во время загрузки операционная система "понимает", что у нее несколько физических дисков и только после старта ОС, посредством программного обеспечения диски объединяются в массивы. Естественно сама операционная система располагается не на RAID-массиве , поскольку устанавливается до его создания.

"Зачем все это нужно?" - спросите Вы? Отвечаю: для повышения скорости чтения/записи данных и/или повышения отказоустойчивости и безопасности.

"Каким образом RAID-массив может увеличить скорость или обезопасить данные?" - для ответа на этот вопрос рассмотрим основные типы RAID-массивов , как они формируются и что это дает в результате.

RAID-0 . Называемый так же "Stripe" или "Лента". Два или более жестких дисков объединяются в один путем последовательного слияния и суммирования объемов. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-0 , операционной системой это будет восприниматься как один диск объемом в терабайт. При этом скорость чтения/записи у этого массива будет вдвое больше, нежели у одного диска, поскольку, например, если база данных расположена таким образом физически на двух дисках, один пользователь может производить чтения данных с одного диска, а другой пользователь производить запись на другой диск одновременно. В то время как в случае расположения базы на одном диске, сам жесткий диск задачи чтения/записи разных пользователей будет выполнять последовательно. RAID-0 позволит выполнять чтение/запись параллельно. Как следствие - чем больше дисков в массиве RAID-0 , тем быстрее работает сам массив. Зависимость прямопропорциональная - скорость возрастается в N раз, где N - количество дисков в массиве.
У массива RAID-0 есть только один недостаток, который перекрывает все плюсы от его использования - полное отсутствие отказоустойчивости. В случае смерти одного из физических дисков массива, умирает весь массив. Есть старая шутка на эту тему: "Что обозначает "0" в названии RAID-0 ? - объем восстанавливаемой информации после смерти массива!"

RAID-1 . Называемый так же "Mirror" или "Зеркало". Два или более жестких дисков объединяются в один путем параллельного слияния. Т.е. если мы возьмем два диска объемом 500Гб и создадим из них RAID-1 , операционной системой это будет восприниматься как один диск объемом в 500Гб. При этом скорость чтения/записи у этого массива будет такая же, как у одного диска, поскольку, чтение/запись информации производятся на оба диска одновременно. RAID-1 не дает выигрыша в скорости, однако обеспечивает большую отказоустойчивость, поскольку в случае смерти одного из жестких дисков, всегда есть полный дубль информации, находящийся на втором диске. При этом необходимо помнить, что отказоустойчивость обеспечивается только от смерти одного из дисков массива. В случае если данные были удалены целенаправленно, то они удаляются со всех дисков массива одновременно!

RAID-5 . Более безопасный вариант RAID-0. Объем массива рассчитывается по формуле (N - 1) * DiskSize RAID-5 из трех дисков по 500Гб, мы получим массив объемом в 1 терабайт. Суть массива RAID-5 в том, что несколько дисков объединятся в RAID-0, а на последнем диске хранится так называемая "контрольная сумма" - служебная информация, предназначенная для восстановления одного из дисков массива, в случае его смерти. Скорость записи в массиве RAID-5 несколько ниже, поскольку тратится время на расчет и запись контрольной суммы на отдельный диск, зато скорость чтения такая же, как в RAID-0.
Если один из дисков массива RAID-5 умирает, резко падает скорость чтения/записи, поскольку все операции сопровождаются дополнительными манипуляциями. Фактически RAID-5 превращается в RAID-0 и если своевременно не позаботиться восстановлением RAID-массива есть существенный риск потерять данные полностью.
С массивом RAID-5 можно использовать так называемый Spare-диск, т.е. запасной. Во время стабильной работы RAID-массива этот диск простаивает и не используется. Однако в случае наступления критической ситуации, восстановление RAID-массива начинается автоматически - на запасной диск восстанавливается информация с поврежденного с помощью контрольных сумм, расположенных на отдельном диске.
RAID-5 создается как минимум из трех дисков и спасает от одиночных ошибок. В случае одновременного появления разных ошибок на разных дисках RAID-5 не спасает.

RAID-6 - является улучшенным вариантом RAID-5. Суть та же самая, только для контрольных сумм используется уже не один, а два диска, причем контрольные суммы считаются с помощью разных алгоритмов, что существенно повышает отказоустойчивость всего RAID-массива в целом. RAID-6 собирается минимум из четырех дисков. Формула расчета объема массива выглядит как (N - 2) * DiskSize , где N - количество дисков в массиве, а DiskSize - объем каждого диска. Т.е. при создании RAID-6 из пяти дисков по 500Гб, мы получим массив объемом в 1,5 терабайта.
Скорость записи RAID-6 ниже чем у RAID-5 примерно на 10-15%, что обусловлено дополнительными временными затратами на расчет и запись контрольных сумм.

RAID-10 - так же иногда называется RAID 0+1 или RAID 1+0 . Представляет собой симбиоз RAID-0 и RAID-1. Массив строится минимум из четырех дисков: на первом канале RAID-0, на втором RAID-0 для повышения скорости чтения/записи и между собой они в зеркале RAID-1 для повышения отказоустойчивости. Таким образом, RAID-10 совмещает в себе плюс первых двух вариантов - быстрый и отказоустойчивый.

RAID-50 - аналогично RAID-10 является симбиозом RAID-0 и RAID-5 - фактически строится RAID-5, только его составляющими элементами являются не самостоятельные жесткие диски, а массивы RAID-0. Таким образом, RAID-50 дает очень хорошую скорость чтения/записи и содержит устойчивость и надежность RAID-5.

RAID-60 - та же самая идея: фактически имеем RAID-6, собранный из нескольких массивов RAID-0.

Так же существуют другие комбинированные массивы RAID 5+1 и RAID 6+1 - они похожи на RAID-50 и RAID-60 с той лишь разницей, что базовыми элементами массива являются не ленты RAID-0, а зеркала RAID-1.

Как Вы сами понимаете комбинированные RAID-массивы: RAID-10 , RAID-50 , RAID-60 и варианты RAID X+1 являются прямыми наследниками базовых типов массивов RAID-0 , RAID-1 , RAID-5 и RAID-6 и служат только для повышения либо скорости чтения/записи, либо повышения отказоустойчивости, неся при этом в себе функционал базовых, родительских типов RAID-массивов .

Если перейти к практике и поговорить о применении тех или иных RAID-массивов в жизни, то логика довольно проста:

RAID-0 в чистом виде не используем вообще;

RAID-1 используем там, где не особо важна скорость чтения/записи, но важна отказоустойчивость - например на RAID-1 хорошо ставить операционные системы. В таком случае к дискам никто кроме ОС не обращается, скорости самих жестких дисков для работы вполне достаточно, отказоустойчивость обеспечена;

RAID-5 ставим там, где нужна скорость и отказоустойчивость, но не хватает денег на покупку большего количества жестких дисков или есть необходимость восстанавливать массивы в случае их повреждения, не прекращая работы - тут нам помогут запасные Spare-диски. Обычное применение RAID-5 - хранилища данных;

RAID-6 используется там, где просто страшно или есть реальная угроза смерти сразу нескольких дисков в массиве. На практике встречается достаточно редко, в основном у параноиков;

RAID-10 - используется там, где нужно чтобы работало быстро и надежно. Так же основным направлением для использования RAID-10 являются файловые серверы и серверы баз данных.

Опять же, если еще упростить, то приходим к выводу, что там где нет большой и объемной работы с файлами вполне достаточно RAID-1 - операционная система, AD, TS, почта, прокси и т.д. Там же, где требуется серьезная работа с файлами: RAID-5 или RAID-10 .

Идеальным решением для сервера баз данных представляется машина с шестью физическими дисками, два из которых объединены в зеркало RAID-1 и на нем установлена ОС, а оставшиеся четыре объединены в RAID-10 для быстрой и надежной работы с данными.

Если прочитав, все вышеизложенное Вы решили установить на своих серверах RAID-массивы , но не знаете, как это делать и с чего начать - обращайтесь к нам ! - мы поможем подобрать необходимое оборудование, а так же проведем инсталляционные работы по внедрению RAID-массивов .

Приветствую читателей блога!
Сегодня будет очередная статья на компьютерную тему, а посвящена она будет такому понятию, как Raid массив дисков — уверен, многим это понятие абсолютно ничего не скажет, а те, кто уже где-то про это слышал, не имеют представление о том, что это вообще такое. Давайте разбираться вместе!

Не вдаваясь в детали терминологии, Raid массив — это некий комплекс, построенный из нескольких жестких дисков, который позволяет более грамотно распределять между ними функции. Как обычно мы размещаем жесткие диски в компе? Подключаем к Sata один жесткий диск, потом другой, третий. И появляются в нашей операционке диски D, E, F и так далее. Мы можем поместить на них какие-то файлы или установить Windows, но по сути это будут отдельные диски — вынув один из них мы ровным счетом ничего не заметим (если на нем не была установлена ОС) кроме того, что нам не будут доступны записанные на них файлы. Но есть другой путь — объединить эти диски в систему, задать им определенный алгоритм совместной работы, в результате которого значительно повысится надежность хранения информации или скорость их работы.

Но прежде, чем мы сможем создать эту систему, нужно знать, поддерживает ли материнская плата работу с дисковыми массивами Raid. Во многих современных материнках уже имеется встроенный Raid-контроллер, который-то и позволяет объединить жесткие диски. Поддерживаемые схемы массивов имеются в описаниях к материнской плате. Например, возьмем первую попавшуюся мне на глаза в Яндекс Маркете плату ASRock P45R2000-WiFi.

Здесь описание поддерживаемых Raid массивов отображается в разделе «Дисковые контроллеры Sata».


В данном примере мы видим, что Sata контроллер поддерживает создание массивов Raid: 0, 1, 5, 10. Что означают эти цифры? Это обозначение различных типов массивов, в которых диски взаимодействуют между собой по разным схемам, которые призваны, как я уже говорил, либо ускорять их работу, либо увеличивают надежность от потери данных.

Если же системная плата компьютера не поддерживает Raid, то можно приобрести отдельный Raid-контроллер в виде PCI платы, которая вставляется в PCI слот на материнке и дает ей возможность создавать массивы из дисков. Для работы контроллера после его установки нужно будет также установить raid драйвер, который либо идет на диске с данной моделью, либо можно просто скачать из интернета. Лучше всего на данном устройстве не экономить и купить от какого-то известного производителя, например Asus, и с чипсетами Intel.


Я подозреваю, что пока что вы еще не очень имеете представление, о чем все же идет речь, поэтому давайте внимательно разберем каждый из самых популярных типов Raid массивов, чтобы все стало более понятно.

Массив RAID 1

Массив Raid 1 — один из самых распространенных и бюджетных вариантов, который использует 2 жестких диска. Этот массив призван обеспечить максимальную защиту данных пользователя, потому что все файлы будут одновременно копироваться сразу на 2 жестких диска. Для того, чтобы его создать, берем два одинаковых по объему харда, например по 500 Гб и делаем соответствующие настройки в BIOS для создания массива. После этого в вашей системе будет виден один жесткий диск размеров не 1 Тб, а 500 Гб, хотя физически работают два жестких диска — формула расчета приведена чуть ниже. И все файлы одновременно будут писаться на два диска, то есть второй будет полной резервной копией первого. Как вы понимаете, при выходе из строя одного из дисков вы не потеряете ни частички своей информации, так как у вас будет вторая копия этого диска.

Также поломки и не заметит операционная система, которая продолжит работу со вторым диском — о неполадке вас известит лишь специальная программа, которая контролирует функционирование массива. Вам нужно лишь удалить неисправный диск и подключить такой же, только рабочий — система автоматически скопирует на него все данные с оставшегося исправного диска и продолжит работу.

Объем диска, который будет видеть система, рассчитывается здесь по формуле:

V = 1 x Vmin, где V — это общий объем, а Vmin — объем памяти самого маленького жесткого диска.


Массив RAID 0

Еще одна популярная схема, которая призвана повысить не надежность хранения, а наоборот, скорость работы. Также состоит из двух HDD, однако в этом случае ОС видим уже полный суммарный объем двух дисков, т.е. если объединить в Raid 0 диски по 500 Гб, то система увидит один диск размером 1 Тб. Скорость чтения и записи повышается за счет того, что блоки файлов пишутся поочередно на два диска — но при этом отказоустойчивость данной системы минимальная — при выходе из строя одного из дисков почти все файлы будут повреждены и вы потеряете часть данных — ту, которая была записана на сломавшийся диск. Восстанавливать информацию после этого придется уже в сервисном центре.

Формула расчета общего объема диска, видимого Windows, выглядит так:

Если вы до прочтения данной статьи по большому счету не беспокоились об отказоустойчивости вашей системы, но хотели бы повысить скорость работы, то можете купить дополнительный винчестер и смело использовать этот тип. По большому счету, в домашних условиях подавляющее количество пользователей не хранит какой-то супер-важной информации, а скопировать какие-то важные файлы можно на отдельный внешний жесткий диск.

Массив Raid 10 (0+1)

Как следует уже из самого названия, этот тип массива объединяет в себе свойства двух предыдущих — это как бы два массива Raid 0, объединенных в Raid 1. Используются четыре жестких диска, на два из них информация записывается блоками поочередно, как это было в Raid 0, а на два других — создаются полные копии двух первых. Система очень надежная и при этом достаточно скоростная, однако весьма дорогая в организации. Для создания нужно 4 HDD, при этом система будет видеть общий объем по формуле:


То есть, если возьмем 4 диска по 500 Гб, то система увидит 1 диск размером 1 Тб.

Данный тип, также как и следующий, чаще всего используется в организациях, на серверных компьютерах, где нужно обеспечить как высокую скорость работы, так и максимальную безопасность от потери информации в случае непредвиденных обстоятельств.

Массив RAID 5

Массив Raid 5 — оптимальное сочетание цены, скорости и надежности. В данном массиве минимально могут быть задействованы 3 HDD, объем рассчитывается из более сложной формулы:

V = N x Vmin — 1 x Vmin, где N — количество жестких дисков.

Итак, допустим у нас 3 диска по 500 Гб. Объем, видимый ОС, будет равен 1 Тб.

Схема работы массива выглядит следующим образом: на первые два диска (или три, в зависимости от их количества) записываются блоки разделенных файлов, а на третий (или четвертый) — контрольная сумма первых двух (или трех). Таким образом, при отказе одного из дисков, его содержимое легко восстановить за счет имеющейся на последнем диске контрольной суммы. Производительность такого массива ниже, чем у Raid 0, но такая же надежная, как Raid 1 или Raid 10 и при этом дешевле последнего, т.к. можно сэкономить на четвертом харде.

На схеме ниже представлена схема Raid 5 из четырех HDD.

Есть также другие режимы — Raid 2,3, 4, 6, 30 и т.д., но они являются по большому счету производными от перечисленных выше.

Как установить Raid массив дисков на Windows?

С теорией, надеюсь, разобрались. Теперь посмотрим на практику — вставить в слот PCI Raid контроллер и установить драйвера, думаю, опытным пользователям ПК труда не составит.

Как же теперь создать в операционной системе Windows Raid массив из подключенных жестких дисков?

Лучше всего, конечно, это делать, когда вы только-только приобрели и подключили чистенькие винчестеры без установленной ОС. Сначала перезагружаем компьютер и заходим в настройки BIOS — здесь нужно найти SATA контроллеры, к которым подключены наши жесткие диски, и выставить их в режим RAID.

После этого сохраняем настройки и перезагружаем ПК. На черном экране появится информация о том, что у вас включен режим Raid и о клавише, с помощью которой можно попасть в его настройку. В примере ниже предложено нажать клавишу «TAB».

В зависимости от модели Raid-контроллера она может быть другой. Например, «CNTRL+F»

Заходим в утилиту настройки и нажимаем в меню что-то типа «Create array» или «Create Raid» — надписи могут отличаться. Также если контроллер поддерживает несколько типов Raid, то будет предложено выбрать, какой именно нужно создать. В моем примере доступен только Raid 0.

После этого возвращаемся обратно в BIOS и в настройке порядка загрузки видим уже не несколько отдельных дисков, а один в виде массива.

Вот собственно и все — RAID настроен и теперь компьютер будет воспринимать ваши диски как один. Вот так, например, будет виден Raid при установке Windows.

Думаю, что вы уже поняли преимущества использования Raid. Напоследок приведу сравнительную таблицу замеров скорости записи и чтения диска отдельно или в составе режимов Raid — результат, как говорится, на лицо.

Сегодня мы узнаем интересную информацию о том, что такое RAID массив и какую роль эти массивы играют в жизни жестких дисков, да-да, именно в них.

Сами жесткие диски играют довольно важную роль в компьютере, так как, при помощи них мы запускаем систему и храним множество информации на них.

Проходит время и любой жесткий диск может отказать, это могут быть любые , о которых мы сегодня не говорим.

Я надеюсь, что многие слышали о так называемых raid массивах , которые позволяют не только ускорить работу жестких дисков, но и с в случае чего, спасти важные данные от исчезновения, возможно, навсегда.

Также, данные массивы имеют порядковые номера, чем и отличаются. Каждый выполняет разные функции. Например, есть RAID 0, 1, 2, 3, 4, 5 и т. д. Вот об этих самых массивах мы сегодня и будем говорить, а потом я напишу статью, как использовать некоторые из них.

Что такое RAID массив?

RAID – это технология, которая позволяет объединить несколько устройств, а именно, жестких дисков, в нашем случае идет что-то вроде их связки. Таким образом, мы повышаем надежность хранения данных и скорость чтения/записи. Возможно и что-то одно из этих функций.

Так что, если вы хотите или ускорить свой диск или просто обезопасить информацию зависит лишь от вас. Точнее сказать, зависит от выбора нужной конфигурации «Рейда», эти конфигурации и отмечены порядковыми номерами 1, 2, 3…

Рейды очень полезная функция и я ее рекомендую использовать всем. Например, если использовать 0-вую конфигурацию, то вы ощутите прирост в скорости жесткого диска, все-таки, жестких диск, это почти самое низкоскоростное устройство.

Если вы спросите почему, то тут, я думаю, все ясно. с каждым годом становятся все мощнее, их обзаводят и более высокой частотой, большим количеством ядер, и многим другим. То же самое с и . А жесткие диски растут пока что только в объеме, а скорость оборота как была 7200, так и осталась. Конечно есть и более редкие модели. Ситуацию пока что спасают так называемые , которые ускоряют систему в несколько раз.

Допустим, вы заходили построить RAID 1 , в этом случае вы получите высокую гарантию защиты ваших данных, так как, они будут дублироваться на другое устройство (диск) и, если один жесткий диск откажет, вся информация останется на другом.

Как видите из примеров, рейды очень важны и полезны, их нужно использовать.

Итак, RAID-массив физически представляет собой связку от двух жестких дисков, подключенных к системной плате, можно и три, и четыре. Кстати говоря, тоже должна поддерживать создание RAID-массивов. Подключение жестких дисков проводиться по стандарту, а создание рейдов проходит на программном уровне.

Когда мы программно создали рейд, на глаз особо ничего не изменилось, вы всего лишь поработаете в BIOS, а все остальное как было, так и останется, то есть, заглянув в Мой компьютер, вы увидите все те же подключённые диски.

Чтобы создать массив нужно не так много: материнская плата с поддержкой RAID, два идентичных жестких диска (это важно ). Они должны быть одинаковы не только в объеме, но и по кэшу, интерфейсу и т. д. Желательно, чтобы и производитель был один и тот же. Теперь включаем компьютер и , там ищем параметр SATA Configuration и ставим на RAID . После перезагрузки компьютера должно появится окно в которой мы увидим информацию о дисках и рейдах. Там мы должны нажать CTRL+I , чтобы начать настройку рейда, то есть, добавлять или удалять из него диски. Потом начнется и ее настройка.

Сколько всего этих рейдов? Их несколько, а именно RAID 1 , RAID 2 , RAID 3 , RAID 4 , RAID 5 , RAID 6 . Более подробно я расскажу только о двух из них.

  1. RAID 0 – позволяет создавать дисковый массив для того, чтобы увеличить скорость чтения/записи.
  2. RAID 1 – позволяет создавать зеркальные дисковые массивы для защиты данных.

RAID 0, что это такое?

Массив RAID 0 , который еще называют «Striping» использует от 2 до 4 жестких дисков, редко больше. Работая совместно, они повышают производительность. Таким образом, данные при таком массиве разбивается на блоки данных, а потом записываются сразу на несколько дисков.

Производительность повышается из-за того, что на один диск записывается один блок данных, на другой диск, другой блок и т. д. Думаю понятно, что 4 диска больше увеличат производительность, чем два. Если говорить о безопасности, то она страдает на всем массиве. Если один из дисков выйдет из строя, то в большинстве случаев, вся информация пропадет безвозвратно.

Дело в том, что в массиве RAID 0 информация располагается на всех дисках, то есть, байты какого-то файла, расположены на нескольких дисках. Поэтому, при выходе из строя одного диска, пропадет и какое-то количество данных, восстановление при этом невозможно.

Из этого следует, что необходимо делать постоянные на внешние носители.

RAID 1, что это такое?

Массив RAID 1 , его еще называют Mirroring – зеркало. Если говорить о недостатке, то в RAID 1 объем одного из жестких дисков вам как-бы «недоступен», потому что, он используется для дублирования первого диска. В RAID 0 это место доступно.

Из преимуществ, как вы, наверное, уже догадались, следует, что массив предоставляет высокую надежность данных, то есть, если выйдет из строя один диск, все данные останутся на втором. Выход из строя сразу двух дисков маловероятен. Такой массив часто используется на серверах, но это не мешает использовать его и на обычных компьютерах.

Если вы выбрали RAID 1, то знайте, что производительность упадет, но если данные вам важны, то используйте данных подход.

RAID 2-6, что это такое?

Сейчас вкратце опишу остальные массивы, так сказать, для общего развития, а все потому, что они не такие популярные, как первые два.

RAID 2 – нужен для массивов, которые используют код Хемминга (не интересовался, что за код). Принцип работы примерно, как в RAID 0, то есть информация также разбивается на блоки и поочередно записываются на диски. Остальные диски используются для хранения кодов коррекции ошибок, при помощи которых, в случае выхода из строя одного из дисков, можно восстановить данные.

Правда, для данного массива лучше использовать 4 диска, что довольно затратно, да и как выяснилось, при использовании стольких дисков, прирост производительности довольно спорный.

RAID 3, 4, 5, 6 – про эти массивы я не буду здесь писать, так как, необходимая информация уже есть на Википедии , если хотите узнать о данных массивах, то читаем.

Какой выбрать RAID массив?

Допустим, что вы часто устанавливаете различные программы, игры и копируете много музыки или фильмов, тогда вам рекомендуется к использованию RAID 0. При выборе жестких дисков будьте внимательные, они должные быть очень надежными, чтобы не потерять информацию. Обязательно делайте резервные копии данных.

Есть важная информация, которая должна быть в целости и сохранности? Тогда на помощь приходит RAID 1. При выборе жестких дисков, также их характеристики должны быть идентичными.

Вывод

Вот мы и разобрали для кого-то новую, а для кого-то старую информацию по RAID-массивам. Надеюсь, что информация для вас окажется полезной. Скоро буду писать о том, как эти массивы создавать.