Счетчик Гейгера-Мюллера - это относительно простой инструмент для измерения . В магазинах эти дозиметры стоят недёшево (от 5000 руб), но если есть сам датчик, то сделать этот измеритель можно с минимальными расходами. Чтобы увеличить чувствительность, представленная здесь конструкция содержит сразу три датчика СТС-5. Это полезно для измерения природных источников с низким уровнем излучения - почва, камни, вода.

Принцип работы счетчика Гейгера-Мюллера заключается в том, что высокое напряжение (обычно 400 В) подаётся на колбу-детектор. Она не проводит электричество, но в течение короткого периода, когда приходит излучение частиц, через неё проскакивает импульс тока. Уровень ионизирующего излучения пропорционален количеству импульсов, обнаруженных за постоянный интервал времени.

Сам счетчик Гейгера-Мюллера (детектор) состоит из двух электродов, а ионизирующая частица создает искровой промежуток между ними. Чтобы уменьшить величину тока, который при этом протекает, высокоомный резистор ставят последовательно с трубкой. Обозначены как R1 на схеме. Обычно он выбирается в диапазоне 1-10 мегаом, допустимые значения указаны в документации к счётчику Гейгера.

Есть разные способы получения данных из детектора, в представленной здесь схеме, резистор последовательно соединен между трубкой и землей, а изменения напряжения на резисторе измеряется с помощью детектора. Этот резистор обозначен как R2 на схеме. Обычно он в диапазоне 10-220 килоом. Аналогично диодам, счетчик Гейгера-Мюллера имеет свою полярность и при подключении в обратном направлении он будет работать неправильно.

Электрическая схема счетчика Гейгера-Мюллера

Здесь микросхема MC34063 - это DC/DC преобразователь, который используется для получения необходимого высокого напряжения из низкого батареечного. Главное его преимущество по сравнению с простой м/с NE555 или аналогичными генераторами заключается в том, что он может контролировать выходное напряжение и подстраивает параметры, чтобы сделать его стабильным (R3, R4, R5, С3). Элементы ОУ IC1A, R8, R9 используются как компаратор, чтобы отфильтровать шумы и сформировать двоичный сигнал (низкий = нет импульса, высокий = импульс проходит).

Внимание! Устройство использует высокое напряжение и может привести к неприятным последствиям при касании к некоторым токонесущим элементам конструкции. Не прикасайтесь к печатной плате или трубке датчика при включении питания.

Запуск и настройка измерителя

Напряжение на С4 должны быть в приемлемом диапазоне для работы Гейгера. Обычно около 400 В - будьте осторожны во время измерений! Если напряжение выходит за диапазон, то элементы С1 (частота преобразователя постоянного тока), и С3, R3, R4, R5 (обратная связь по напряжению преобразователя) могут быть скорректированы.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Счетчик Гейгера своими руками



Мысль приобрести счетчик Гейгера появилась у меня давно, как говорится, на всякий случай.
Но посмотрев на цены готовых приборов, желание пропало:)
Так же несколько раз натыкался в интернете на схемы приборов, но подходящий для себя так и не нашел.
...и вот, однажды, почитав какой то форум, о том, как много всяких радиоактивных вещей может нас окружать, о которых мы даже и не догадываемся, желание иметь под рукой подобный прибор появилось вновь.
Для этого было решено разработать собственный прибор.

Ниже расположена схема счетчика Гейгера на микроконтроллере PIC 16F84, печатная плата в PCAD"е и прошивка микроконтроллера.

Характеристики прибора:
Питание: 9 В
Потребляемый ток без подсветки ЖКИ: 7 мА
с подсветкой ЖКИ: 11 мА (зависит от яркости)
Диапазон измерений: 0 мкР - 144 мР (предел счетчика СБМ-20)

ЖКИ пришлось заказвыать, т.к. в магазинах подходящих по габаритам не оказалось. Для этих целей оптимально подходит 8 символьный 2 строчный ЖКИ на базе контроллера HD44780.
В принципе, должен подойти любой 2х строчный ЖКИ на базе контроллера HD44780

Повышающий трансформатор намотан на ферритовом кольце 16х10х4.5

Обмотка I - 420 витков провода ПЭВ 0.1
Обмотка II - 8 витков провода ПЭВ 0.15 - 0.25
Обмотка III - 3 витка провода ПЭВ 0.15 - 0.25

В качестве корпуса использован цифровой мультиметр DT-830. Дешевле оказалось купить мультиметр ради его корпуса, чем покупать корпус отдельно:)

Небольшая доработка

Вынимаем потроха, удаляем наклейку, канцелярским ножом и напильником доводим до совершенства.
Так же сверлим необходимые отверстия:

При проектировании я не учел одну вещь - найти малогабаритную кнопку и выключатель для крепления на корпусе оказалось непросто.
Поэтому пришлось сделать дополнительно небольшую печатку для монтажа выключателя от неисправного мультиметра, а кнопку закрепить хомутиком на внутренней стороне передней панели.

Проверка прибора:

Для начала проверяем правильность монтажа, подключение трансформатора и ЖКИ, а также полярность подключения счетчика СБМ-20.
Подаем питание.
ВНИМАНИЕ! В схеме присутствует высокое напряжение!
На конденсаторе С1 должно быть напряжение не менее 200 вольт (при измерении цифровым мультиметром, т.к его внутреннее сопротивление не достаточно высоко, происходит падение напряжения, на самом деле на конденсаторе С1 должно быть около 350 вольт!).

На ЖКИ появляется текст:

После инициализации, на дисплее отображаются показания эквивалентной дозы радиации. В среднем, около 14-22 мкР, но может быть и более.
В дальнейшем, каждую секунду происходит обновление показаний, с уточнением средней эквивалентной дозы радиации за единицу времени.

Далее нужно проверить, что счетчик действительно работает, и может показывать что нибудь большее, чем естественный радиационный фон.
Для этого в магазине удобрений можно купить "нитрат калия" (KNO3). В KNO3 содержится его радиоактивный изотоп, на который должен реагировать прибор.

Емкость с KNO3 необходимо расположить максимально близко к чувствительной стороне прибора (там, где находится счетчик СБМ-20).

Опять же, результат может быть разный, но показания должны быть существенно выше естественного фона.

Изобретенный Гансом Гейгером прибор, способный определить ионизирующее излучение, представляет собой герметизированный баллон с двумя электродами, куда закачивается газовая смесь, состоящая из неона и аргона, которая ионизируется. На электроды подается высокое напряжение, которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц.

Он способен реагировать на ионизирующие излучения самых различных видов. Это альфа-, бета-, гамма-, а также рентгеновское, нейтронное и ультрафиолетовое излучения. Так, входное окно счетчика Гейгера, способного регистрировать альфа- и мягкое бета-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения рентгеновского излучения его изготавливают из бериллия, а ультрафиолетового - из кварца. Построить самому простой счетчик Гейгера, который использует вместо дорогой и дефицитной трубки Гейгера-Мюллера, можно задействуя фотодиод в качестве детектора излучения. Он обнаруживает альфа- и бета частицы. К сожалению гамма-диапазон радиации он засечь не сможет, но для начала хватит и такого. Схема паяется на небольшую печатную плату, и все это помещено в алюминиевый корпус. Медные трубки и кусок алюминиевой фольги используются для фильтрации радиочастотных помех.

Схема счётчика Гейгера на фотодиоде

Список деталей нужных для радиосхемы

  • 1 BPW34 фотодиода
  • 1 LM358 ОУ
  • 1 транзистор 2N3904
  • 1 транзистор 2N7000
  • 2 конденсатора 100 НФ
  • 1 конденсатор 100 мкФ
  • 1 конденсатор 10 нФ
  • 1 конденсатор 20 нФ
  • 1 10 Мом резистор
  • 2 1.5 Мом резистора
  • 1 56 ком резистор
  • 1 150 ком резистор
  • 2 1 ком резистора
  • 1 250 ком потенциометр
  • 1 Пьезодинамик
  • 1 Тумблер включения питания

Как вы можете видеть из схемы, она настолько проста, что собирается за пару часов. После сборки убедитесь, что полярность динамика и светодиода, являются правильными.

Наденьте на фотодиод медные трубки и изоленту. Она должна плотно прилегать.

Просверлите отверстие в боковой стене алюминиевого корпуса для тумблера, а сверху для фотодатчика, светодиода и регулятора чувствительности. Больше никаких дырок в корпусе быть не должно, так как схема очень чувствительна к электромагнитным наводкам.

После того, как все электрические компоненты будут соединены, вставьте батарейки. Мы использовали три сложеные вместе CR1620 батареи. Изоленту обмотайте вокруг трубок, чтобы они не смещались. Это также поможет закрыть свет от воздействия на фотодиод. Вот теперь всё готово для начала обнаружения радиоактивных частиц.

Проверить его в действии можно на любом тестовом источнике радиации, который вы можете найти в специальных лабораториях или в школьных кабинетах, по проведению практических работ по этой теме.


Одно из главных подручных средств в лаборатории радиолюбителя - это конечно же блок питания, а как известно, основа большинства блоков питания - силовой трансформатор напряжения. Иногда в руки попадаются отличные трансформаторы, но после проверки обмоток становится ясно, что нужное нам напряжение отсутствует по причине перегорания первички или вторички.

UPD: Кто уже читал пост - пожалуйста зайдите и поучаствуйте в опросе. Спасибо большое!

Примерно полтора года назад на нескольких сетевых ресурсах, в том числе и на хабре, начали пиарить проект «До-ра» - приставку к iPhone, позволяющую измерять радиационный фон и делать много всего вкусного на основании получаемой со счётчика Гейгера информации. Статьи в новостях проекта упоминают несколько многомиллионных грантов, выделенных на разработку приборчика фондом «Сколково». Шли месяцы, «До-ра» всё никак не получалась, покупатели ждали, конкуренты не дремали. Так ли сложна «До-ра» как её малюют и как собрать за пару часов из подручных деталей в десять раз более чувствительный аналог я расскажу тем кто нажмёт на

Итак, приступим. Совсем недавно я узнал о прекрасной (и к тому же бесплатной!) программе GeigerBot, обрабатывающей поступающие на микрофонный вход iPhone или iPad импульсы с детекторов ионизирующего излучения и имеющей приятную особенность: при определённой комбинации настроек через выход наушников воспроизводится синусоидальный сигнал частотой 20 кГц. Комбинация настроек, необходимая для этого, такова: в ClickifyLab все регуляторы должны быть в максимуме, Echo Filter включен, а сама функция щелчков Clickify - выключена. Проделав соответствующие настройки я убедился с помощью 3.5-миллиметрового штекера и осциллографа в том что сигнал действительно появляется и его размах от пика до пика при максимальной громкости составляет примерно 1.3 вольта. В этот момент не осталось никаких сомнений в том через час этот сигнал будет использован после небольшой трансформации для питания счётчика Гейгера, импульсы с которого будут направлены на микрофонный вход.
Счётчик был взят популярный - СБМ-20. Для его питания нужно 400 вольт постоянного тока, получить их можно стандартым способом с помощью трансформатора имеющего высокий коэффициент трансформации и выпрямителя. Очень высокий коэффициент трансформации у трансформаторов, питающих люминесцентные лампы с холодным катодом в подсветках мониторов. Мне подвернулась плата подсветки от уже-не-помню-чего, содержащая трансформатор SGE2687-1 (подойдёт любой аналогичный, их сотни типов) с коэффициентом трансформации около 150. Немного маловато, но другого у меня не было и недостаток напряжения был восполнен диодными удвоителями. Берём макетку и начинаем собирать схему.

Схема получилась очень простой: трансформатор, два удвоителя напряжения, варистор на 390 вольт в качестве стабилитрона и транзистор для увеличения длительности приходящих со счётчика Гейгера импульсов до удобоваримых для звукового АЦП iPhone значений. При исправных деталях и правильном монтаже она начнёт работать сразу, номиналы большинства деталей можно изменять в очень широких пределах без ущерба работоспособности всей схемы. Вставляем разъём в iPhone и запускаем приложение GeigerBot. Аккуратно высокоомным (не менее 100 МОм) вольтметром или тестером с добавочным сопротивлением контролируем напряжение на варисторе, оно должно быть около 400 вольт. Убеждаемся что в настройках GeigerBot выбран тип счётчика СБМ-20 и наблюдаем за количеством регистрируемых импульсов. При естественном радиационном фоне (0.1-0.15 мкЗв\ч) импульсы будут следовать со средней скоростью 20-30 в минуту. При большой длине кабеля от разъёма до схемы возможно взаимное влияние относительно мощного выходного сигнала частотой 20 кГц на микрофонный вход, проявляться это может в виде огромной скорости регистрации импульсов - несколько тысяч в секунду. Для ослабления этого влияния используется два раздельных земляных провода - для питающей и сигнальных цепей. В случае таких проблем в настройках GeigerBot надо увеличить порог срабатывания по амплитуде импульсов (Settings - Geiger Counter - Custom GM tube - I/O Settings - Volume threshold поставить 10000 или около того).
Вот небольшое видео, показывающее работу устройства.

На двадцать пятой секунде показана реакция счётчика на солонку, изготовленную в США в сороковых годах прошлого столетия и покрытую урановой глазурью, на тридцать пятой - форма импульсов на микрофонном входе iPhone.
Вот и всё, то есть почти всё. Чтобы придать нашему детектору-приставке законченный вид возьмём небольшой отрезок подходящей трубки, засунем туда всё что мы напаяли, не забыв заизолировать части схемы друг от друга и загерметизируем по торцам термоклеем. Вот теперь всё, можно ехать в Припять: предупреждён - значит вооружён.

Спасибо за внимание. Всем удачи в техническом творчестве и хорошей экологической обстановки!

Счётчик Гейгера — газоразрядный прибор для счета числа прошедших через него ионизирующих частиц. Представляет собой газонаполненный конденсатор, пробивающийся при появлении ионизирующей частицы в объёме газа. Счетчики Гейгера — достаточно популярные детекторы (датчики) ионизирующего излучения. До сих пор им, изобретенным в самом начале нашего века для нужд зарождающейся ядерной физики, нет, как это ни странно, сколько-нибудь полноценной замены.

Конструкция счетчика Гейгера достаточно проста. В герметичный баллон с двумя электродами введена газовая смесь, состоящая из легко ионизируемых неона и аргона. Материал баллона может быть различным — стеклянным, металлическим и др.

Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно». Повсеместное применение счетчика Гейгера-Мюллера объясняется высокой чувствительностью, возможностью регистрировать различное излучение, сравнительной простотой и дешевизной установки.

Схема подключения счетчика Гейгера

К электродам подводят высокое напряжение U (см рис.), которое само по себе не вызывает каких-либо разрядных явлений. В таком состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации — след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют «по дороге» другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс заканчивается образованием в пространстве между электродами электронно-ионного облака, значительно увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Обратный процесс — востановление газовой среды в ее первоначальное состояние в так называемых галогеновых счетчиках — происходит само собой. В ход вступают галогены (обычно хлор или бром), в малом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс протекает достаточно медленно. Время, необходимое для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие — «мертвое» время — является главной его паспортной характеристикой.

Такие счетчики обозначаются как галогеновые самогасящиеся. Отличаясь очень низким напряжением питания, хорошими параметрами выходного сигнала и достаточно высоким быстродействием, они оказались востребованными в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Счетчики Гейгера способны обнаруживать самые разные виды ионизирующего излучения — a, b, g, ультрафиолетовое, рентгеновское, нейтронное. Но действительная спектральная чувствительность счетчика очень зависит от его конструкции. Так, входное окно счетчика, чувствительного к a- и мягкому b-излучению, должно быть достаточно тонким; для этого обычно используют слюду толщиной 3…10 мкм. Баллон счетчика, реагирующего на жесткое b- и g-излучение, имеет обычно форму цилиндра с толщиной стенки 0,05….0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового — из кварцевого стекла.

Зависимость скорости счета от напряжения питания в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые a- частицы. Фотонное излучение — ультрафиолетовое, рентгеновское, g-излучение — счетчики Гейгера воспринимают опосредованно — через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Каждая фиксируемая счетчиком частица образует в его выходной цепи короткий импульс. Число импульсов, появляющихся в единицу времени, — скорость счета счетчика Гейгера — зависит от уровня ионизирующей радиации и напряжения на его электродах. Стандартный график зависимости скорости счета от напряжения питания Uпит показан на рисунке выше. Здесь Uнс — напряжение начала счета; Uнг и Uвг — нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжение Uр обычно избирают в середине этого участка. Ему соответствует Nр — скорость счета в этом режиме.

Зависимость скорости счета от степени радиационного облучения счетчика — основная его характеристика. График этой зависимости имеет почти линейный характер и поэтому зачастую радиационную чувствительность счетчика показывают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета — имп/с — к уровню радиации — мкР/с).

В тех случаях, когда она не указана, определять о радиационной чувствительности счетчика приходится по другому его тоже крайне важному параметру — собственному фону. Так называют скорость счета, фактором которой являются две составляющие: внешняя — естественный радиационный фон, и внутренняя — излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода.

Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

Еще одной существенной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. В какой мере эта зависимость существенна, представляет график на рисунке. «Ход с жесткостью» будет сказываться, очевидно, на точность осуществляемых измерений.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы — по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием a-частиц, электронов, g-квантов, ничем не отличаются. Сами частицы, их энергии полностью исчезают в порождаемых ими лавинах-близнецах.

В таблице приведены сведения о самогасящихся галогеновых счетчиках Гейгера отечественного производства, наиболее подходящих для бытовых приборов радиационного контроля.

1 2 3 4 5 6 7
СБМ19 400 100 2 310* 50 19х195 1
СБМ20 400 100 1 78* 50 11х108 1
СБТ9 380 80 0,17 40* 40 12х74 2
СБТ10А 390 80 2,2 333* 5 (83х67х37) 2
СБТ11 390 80 0,7 50* 10 (55х29х23,5) 3
СИ8Б 390 80 2 350-500 20 82х31 2
СИ14Б 400 200 2 300 30 84х26 2
СИ22Г 390 100 1,3 540* 50 19х220 4
СИ23БГ 400 100 2 200-400* 19х195 1
  • 1 — рабочее напряжение, В;
  • 2 — плато — область малой зависимости скорости счета от напряжения питания, В;
  • 3 — собственный фон счетчика, имп/с, не более;
  • 4 — радиационная чувствительность счетчика, имп/мкР (* — по кобальту-60);
  • 5 — амплитуда выходного импульса, В, не менее;
  • 6 — габариты, мм — диаметр х длина (длина х ширина х высота);
  • 7.1 — жесткое b — и g — излучение;
  • 7.2 — то же и мягкое b — излучение;
  • 7.3 — то же и a — излучение;
  • 7.4 — g — излучение.