В системах с ОС ввод в передаваемую информацию избыточности производится с учетом состояния дискретного канала. С ухудшением состояния канала вводимая избыточность увеличивается и наоборот, по мере улучшения состояния канала она уменьшается.

В зависимости от назначения ОС различают системы:

с решающей обратной связью (РОС)

информационной обратной связью (ИОС)

с комбинированной обратной связью (КОС)

В системах с РОС приемник, приняв кодовую комбинацию и проанализировав ее на наличие ошибок, принимает окончательное решение о выдаче комбинации потребителю информации или о ее стирании и посылке по обратному каналу сигнала о повторной передаче этой кодовой комбинации (переспрос). Поэтому системы с РОС часто называют системами с переспросом, или системами с автоматическим запросом ошибок (АЗО). В случае принятия кодовой комбинации без ошибок приемник формирует и направляет в канал ОС сигнал подтверждения, получив который передатчик передает следующую кодовую комбинацию. Таким образом, в системах с РОС активная роль принадлежит приемнику, а по обратному каналу передаются вырабатываемые им сигналы решения (отсюда название - решающая ОС).

На данной схеме ПК пер. - передатчик прямого канала; ПК пр - приемник прямого канала; ОК пр - приемник обратного канала; ОК пер - передатчик обратного канала; РУ - решающее устройство, ИС - источник сообщения, ПС - получатель сообщения.

В системах с ИОС по обратному каналу передаются сведения о поступающих на приемник кодовых комбинациях (или элементы комбинации) до их окончательной обработки и принятия решения. При правильном повторении передающая сторона подтверждение, а при не правильном - повторяет сообщение еще раз. Частным случаем ИОС является полная ретрансляция поступающих на приемную сторону кодовых комбинаций или их элементов.

Соответствующие системы получили название ретрансляционных. В более общем случае приемник вырабатывает специальные сигналы, имеющие меньший объем, чем полезная информация, но характеризующие качество ее приема, которые по каналу ОС направляются передатчику. Если количество информации, передаваемое по каналу ОС (квитанции), равно количеству информации в сообщении, передаваемом в прямом канале, то ИОС называется полной, если же содержащаяся в квитанции информация отражает лишь некоторые признаки сообщения, то ИОС называется укороченной. Таким образом, по каналу ОС передается или вся полезная информация, или информация о ее отличительных признаках, поэтому такая система называется информационной. Полученная по каналу ОС квитанция анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник или выдает накопленную кодовую комбинацию получателю, или стирает ее и запоминает вновь переданную.

В системах с КОС решение о выдаче кодовой комбинации получателю или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи как квитанций, так и решений.

Системы с ОС подразделяют также на системы с ограниченным числом повторений и с не ограниченным числом повторений. В системах с ограниченным числом повторений каждая кодовая комбинация может повторятся не более раз, и в системах с неограниченным числом повторений передача комбинаций происходит столько раз, пока приемник или передатчик не примет решение о выдаче комбинации пользователю. При ограниченном числе повторений вероятность выдаче не правильной кодовой комбинации потребителю больше, но за то меньше потери по времени на передачу и проще реализация аппаратуры.

Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название системы без памяти, а второго типа - систем с памятью.

В системах с РОС приемник, приняв кодовую комбинацию и проанализировав ее на наличие ошибок, принимает окончательное решение о выдаче комбинации потребителю информации или о ее стирании и посылке по обратному каналу сигнала о повторной передаче этой кодовой комбинации (переспрос). Поэтому системы с РОС часто называются системами с переспросом, или системами с автоматическим запросом ошибок. В случае принятия кодовой комбинации без ошибок приемник формирует и направляет сигнал подтверждения в канал ОС. Получив сигнал подтверждения, передатчик передает следующую кодовую комбинацию. Таким образом, в системах с РОС активная роль подлежит приемнику, а по обратному каналу передаются вырабатываемые им сигналы решения. Структурная схема системы с РОС приведена на рис. 4.1.1.

В системах с ИОС (рис. 4.1.2) по обратному каналу передаются сведения о поступающих в канал кодовых комбинациях (или элементов комбинации) до их окончательной обработки и принятия заключительных решений. ИОС может быть полной и укороченной. Если количество информации, передаваемое по каналу ОС (квитанции), равно количеству информации в сообщении, передаваемом по прямому каналу, то ИОС называется полной. Если же содержащаяся в квитанции информация отражает лишь некоторые признаки сообщения, то ИОС называется укороченной.

Полученная по каналу ОС информация (квитанция) анализируется передатчиком, и по результатам анализ передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданной. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник или выдает накопленную кодовую комбинацию получателю, или стирает ее и запоминает вновь переданную.

В системах с КОС решение о выдаче КК получателю информации или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи как квитанций, так и решений.

Системы ОС:

с ограниченным числом повторений (КК повторяется не более L раз)

с неограниченным числом повторений (КК повторяется до тех пор, пока приемник или передатчик не примет решение о выдаче этой комбинации потребителю).

Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных КК, с целью принятия более правильного решения. Система первого типа называется системой без памяти, а второго - с памятью.

Системы с ОС являются адаптивными: темп передачи информации по каналам связи автоматически приводится в соответствие с конкретными условиями прохождения сигналов.

Наличие ошибок в каналах ОС приводит к тому, что в системах с РОС возникают специфические потери верности, состоящие в появлении лишних КК - вставок и пропадания КК - выпадений.

Причины возникновения вставок и выпадений:

Если в результате действия помех в ОК сигнал «подтверждения» трансформировался в сигнал «переспроса», то уже принятая КК выдается получателю, а в канал повторно отправится этаже комбинация. Таким образом, ПС последовательно получит две одинаковые комбинации - «вставка».

Если произойдет переход «переспрос» - «подтверждение», то ошибочно принятая комбинация будет стерта, но в канал пойдет следующая. Значит ПС не получит данной комбинации - произойдет выпадение.

В системах с ОС ввод в передаваемую информацию избыточности производится с учетом состояния дискретного канала. С ухудшением состояния канала вводимая избыточность увеличивается, и наоборот, по мере улучшения состояния канала она уменьшается.

В зависимости от назначения ОС различают системы:

с решающей обратной связью (РОС)

информационной обратной связью (ИОС)

с комбинированной обратной связью (КОС)

Рисунок 21 – Схема системы ПДС с РОС.

Рисунок 22 – Схема системы ПДС с ИОС.

В системе с РОС приемник, приняв кодовую комбинацию и проанализировав ее на наличие ошибок, принимает окончательное решение о выдаче комбинации потребителю информации или о ее стирании и посылке по обратному каналу сигнала о повторной передаче этой кодовой комбинации. Поэтому системы с РОС часто называют системами с переспросом, или системами с автоматическим запросом ошибок (АЗО).В случае принятия кодовой комбинации без ошибок приемник формирует и направляет в канал ОС сигнал подтверждения, получив который, передатчик ПКпер передает следующую кодовую комбинацию. Таким образом, в системах с РОС активная роль принадлежит приемнику, а по обратному каналу передаются вырабатываемые им сигналы решения.

В системах с ИОС по обратному каналу передаются сведения о поступающих на приемник кодовых комбинациях до их окончательной обработки и принятия заключительных решений. Частным случаем ИОС является полная ретрансляция поступающих на приемную строку КК или их элементов. Эти системы получили название ретрансляционных. Если количество информации, передаваемое по каналу ОС, равно количеству информации в сообщении, передаваемому по прямому каналу, то ИОС называется полной. Если содержащаяся в квитанции информация отражает лишь некоторые признаки сообщения, то ИОС называется укороченной. Таким образом, по каналу ОС передается или вся полезная информация, или информация о ее отличительных признаках, поэтому такая ОС называется информационной.

Полученная по каналу ОС информация анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей КК или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятых решениях, а затем соответствующие КК. Приемник ПКпр или выдает накопленную кодовую комбинацию получателю, или стирает ее и запоминает вновь переданную. В системах с укороченной ИОС меньше загрузка обратного канала, но больше вероятность появления ошибок по сравнению с полной ИОС.

В системах с КОС решение о выдаче КК получателю информации или о повторной передаче может приниматься и в приемнике, и в передатчике системы ПДС, а канал ОС используется для передачи, как квитанций, так и решений.

Системы ОС:

    с ограниченным числом повторений (КК повторяется не более L раз)

    с неограниченным числом повторений(КК повторяется до тех пор, пока приемник или передатчик не примет решение о выдаче этой комбинации потребителю).

Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных КК, с целью принятия более правильного решения. Система первого типа называется системой без памяти, а второго- с памятью.

Системы с ОС являются адаптивными: темп передачи информации по каналам связи автоматически приводится в соответствие с конкретными условиями прохождения сигналов.

Исследования показали, что при заданной верности передачи оптимальная длина кода в системах с ИОС несколько меньше, чем в системах с РОС, что удешевляет реализацию устройств кодирования и декодирования. Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяются в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.

ИС – источник сообщений;

Н 1 – накопитель передатчика;

УУ 1 – устройство управления передатчика;

УАС – устройство анализа сигналов решения;

ПДК – прямой дискретный канал;

ОДК – обратный дискретный канал;

Н 2 – накопитель приемника;

УУ 2 – устройство управления приемника;

УФС – устройство формирования сигналов решения;

ПС – получатель сообщений.

ИС Н 1 Кодер ПДК Декодер Н 2 ПС

УУ 1 УАС ОДК УФС УУ 2

Передатчик дискретный приемник

Рис. 5.5 Структурная схема системы с РОС – ОЖ.

Работа схемы происходит следующим образом. По команде от устройства управления передатчика (УУ) источник сообщений (ИС) выдает кодовые комбинации, которые записываются в накопитель передатчика (Н 1), где формируется блок для передачи. Далее блок поступает в кодер, где осуществляется введение избыточности, т.е. кодирование кодом, позволяющим обнаруживать ошибки. Затем закодированный блок поступает в прямой дискретный канал. В приемнике декодер определяет произошла ли ошибка при передаче блока по прямому каналу. Кроме того, принятый блок записывается в накопитель приемника (Н 2). Если в блоке ошибка не обнаружена, то устройство управления приемника выдает команду в устройство формирования сигналов решения (УФС) на формирование команды «подтверждение». УФС формирует команду и отправляет ее по обратному дискретному каналу. Кроме того, УУ 2 выдает команду на Н 2 , и принятый блок передается получателю сообщений. Если в принятом блоке обнаружена ошибка, то УУ 2 выдает команду в Н 2 на стирание принятого блока, а также команду в УФС на формирование команды «переспрос». Передатчик, приняв по обратному дискретному каналу сигнал обратной связи, анализирует сигнал в блоке анализа сигналов решения. Если получен сигнал подтверждения, то УУ 1 посылает команду в источник сообщений для выдачи следующих кодовых комбинаций и цикл передачи повторяется. Если УАС дешифририует сигнал «переспрос», то УУ 1 выдает команду на Н 1 для повторения предыдущего блока. Так повторяется до правильного приема блока приемником.

Изобразим временную диаграмму работы системы с РОС – ОЖ.

nτ 0 t p t аб t с t p t p

в пдк 1 2 2 3 t

t p t p t ас t ас

ПРМ 1 2 2 3 t

из пдк t аб t аб t аб

ПРД П 3 П t

τ с РОС – ОЖ τ с τ с

Рис. 5.6 Временная диаграмма РОС – ОЖ

На временной диаграмме обозначено:

t р – время распространения сигнала по дискретному каналу связи

t аб – время анализа блока в приемнике (декодирование)

t с – длительность сигнала в обратном дискретном канале

t ас – время анализа сигнала-решения из ОДК

t ож – время ожидания, т.е. время простоя прямого дискретного канала

С – время цикла работы системы ПДС

Непосредственно из временной диаграммы можно записать следующее соотношение:

t ож = t р + t аб + t с + t р + t ас =2 t р + t с + t аб + t ас

Упрощенная структурная схема аппаратуры ПДС.

На рис.1.6 представлена упрощённая структурная схема аппаратуры передачи данных, являющейся типичным представителем аппаратуры передачи дискретных сообщений. Приведенные на рисунке функциональные узлы аппаратуры соответствуют ГОСТ 17657 -72 и полностью отображают традиционно сложившееся и закрепленное в нормативных документах содержание изучаемой дисциплины.

ООД АПД АПД ООД

УЗО УПС Канал связи УПС УЗО

Ко-дер
УЦС

Канал постоянного тока

Дискретный канал


Канал передачи данных


Рис.1.6

На рис.1.6 приняты следующие обозначения:

ОУД – оконечная установка данных,

АПД – аппаратура передачи данных,

ООД – оконечное оборудование данных,

УЗО – устройство защиты от ошибок,

УПС – устройство преобразования сигналов,

РУ - регистрирующее устройство,

УОНС – устройство оценки надежности сигнала,

УСП – устройство синхронизации по элементам,

УЦС – устройство цикловой синхронизации.

Оконечное оборудование данных (ООД ) представляет собой совокупность устройств ввода и вывода данных. Эти устройства на рис.1.6 представлены источником и получателем сообщений данных. Как правило, это технические средства. Источник формирует сообщение для его дальнейшей передачи, а приемник отображает сообщение в виде, адекватном его содержанию, для представления пользователю. Сообщения данных по своей природе имеют вид, о котором говорилось выше.

В случае аналоговых сообщений они подвергаются дополнительной обработке с помощью преобразователей «аналог – код» на передающей стороне и «код – аналог» - на приемной.

Обычно ввод сообщения от источника данных управляется со стороны АПД, а вывод к получателю – принудительный по мере поступления сообщений.

Аппаратура передачи данных (АПД) – совокупность средств, указанных на рис.1.6. К ним могут быть добавлены вспомогательные устройства, например, контрольно-измерительные устройства, устройства автоматического вызова и ответа и т.д.

Оконечная установка данных (ОУД) – совокупность оконечного оборудования данных и аппаратуры передачи данных, объединенных общим для них устройством управления (на рисунке не представлено).



Устройство защиты от ошибок (УЗО) предназначено для уменьшения числа ошибок, появляющихся в сообщении данных под воздействием помех в канале связи. УЗО включает в свой состав устройства для помехоустойчивого кодирования и декодирования сообщений (кодер, декодер) и устройство цикловой синхронизации (УЦС). Кодер преобразует простой код, в котором сообщение поступает в АПД из ООД, в помехоустойчивый, а декодер выделяет из кодовых комбинаций помехоустойчивого кода, пришедших из канала связи, сообщение источника, устраняя при этом часть ошибок, появившихся при передаче сообщения по каналу связи в результате воздействия помех.

Устройство цикловой синхронизации (УЦС) устанавливает и поддерживает требуемые фазовые соотношения между циклами обработки передаваемых сообщений в кодере и декодере.

Устройство преобразования сигналов (УПС) предназначено для приведения сигнала сообщения, сформированного в ОУД, к виду, обеспечивающему ему передачу по каналу электросвязи. Основной состав УПС представлен на рис.1.6 .

Модулятор – устройство, осуществляющее модуляцию. Демодулятор осуществляет обратное преобразование. Совокупность модулятора и демодулятора образует модем .

Регистрирующее устройство (РУ) осуществляет определение и запоминание значащей позиции принятого сигнала в пределах каждого единичного интервала, т.е. в двоичном случае определяет и запоминает значение каждого принятого бита.

Устройство оценки надежности сигнала (УОНС) – устройство, измеряющее один или несколько параметров принятого сигнала и вырабатывающее специальный сигнал, указывающий на возможные ошибки. Здесь и далее под ошибкой будем понимать событие, состоящее в том, что воспроизводимая приемником АПД последовательность сигналов не соответствует исходной. Ошибочный единичный элемент появляется на выходе РУ как результат неправильного решения РУ о значении принятого единичного элемента, ошибочная кодовая комбинация – на выходе декодера как результат неправильного решения декодера о соответствии принятой кодовой комбинации переданной. УОНС призван сократить число ошибок на выходе приемника АПД. Это достигается обработкой – стиранием единичного элемента на выходе РУ или отказом от декодирования – стиранием кодовой комбинации. Эти решения принимаются в том числе и на основе результатов работы УОНС.

Устройство синхронизации по элементам (или поэлементной синхронизации) (УСП) обеспечивает синхронизацию переданного и принятого сигналов, при которой устанавливаются и поддерживаются требуемые фазовые соотношения между значащими моментами переданных и принятых единичных элементов этих сигналов.

Кратко опишем процесс передачи информации в рассматриваемой системе.

Источник вырабатывает сообщение. Если это сообщение имеет дискретную природу (буквы, цифры и т.п.), то оно на выходе источника представляется в виде комбинаций простого кода. Обычно для этой цели используются пятиэлементные коды или семиэлементные коды, называемые первичными. Если вырабатываемое сообщение является аналоговым (изменение температуры, уровня радиации, освещенности и т.п.), то с помощью цифро-аналогового преобразователя («аналог – код») оно приводится к дискретной форме и затем представляется в виде последовательности комбинаций первичного кода.

По команде от АПД сообщения от источника данных вводятся в кодер . Здесь ℓ- элементная комбинация первичного кода преобразуется в n -элементную комбинацию избыточного кода, где n> ℓ. В комбинации избыточного кода помимо элементов, несущих информацию источника сообщений (информационные элементы), вводятся по определенному правилу избыточные элементы, обеспечивающие коду помехоустойчивые свойства. Далее побитно n -элементная комбинация вводится в виде сигналов постоянного тока в модулятор , где сигналы постоянного тока преобразуются к виду, согласованному с используемым каналом, и с помощью каналообразующей аппаратуры через среду распространения поступают на вход демодулятора , где осуществляется обратное преобразование модулированного сигнала в сигналы постоянного тока. При прохождении электрического сигнала по каналу связи на него воздействуют различного рода помехи, которые проявляются в виде искажений длительности сигналов постоянного тока на выходе демодулятора .

УСП определяет ожидаемые значащие моменты поступающих на вход РУ импульсов постоянного тока, и РУ восстанавливает значащие позиции принятых сигналов на значащих интервалах.

С выхода РУ принятое сообщение побитно поступает в декодер . С помощью УЦС определяется начало принятых n -элементных комбинаций. Декодер на основе связей между информационными и избыточными элементами выделяет информационные элементы, и УЗО принудительно выводит их к получателю данных в виде -элементных комбинаций. Принятые сообщения в зависимости от их первоначальной формы выдаются получателю либо в дискретной форме (комбинации первичного кода), либо с помощью цифро-аналогового преобразователя («код – аналог») в непрерывной форме.

Для обеспечения целевого назначения рассматриваемой системы к ней предъявляются определенные требования.

Так как система связи является сложной системой, то для предъявления требований к ней она декомпозируется на составные части.

На рис.1.6 в рассматриваемой системе связи выделяются три составные части:

  • канал постоянного тока,
  • дискретный канал,
  • канал передачи данных.

Канал постоянного тока, как это видно из рис.1.6 , представляет собой часть системы связи от входа модулятора до выхода демодулятора. Сигналы на входе и выходе этого канала являются импульсами постоянного тока, к которым предъявляются требования по величине искажений, т.е. канал постоянного тока нормируется по величине искажений длительности передаваемых и принимаемых сигналов.

Дискретный канал – часть системы связи от выхода кодера до входа декодера. На входе и выходе этого канала сигналы имеют вид последовательностей кодовых символов; в двоичном случае – последовательностей двоичных единиц. Выход этого канала – выход РУ, который характеризуется возможностью появления ошибок в результате превышения допустимой величины искажения длительности сигналов на входе РУ. Дискретный канал вводится для задания требований, т.е. нормирования вероятности появления ошибок в кодовой последовательности на входе декодера УЗО.

Канал передачи данных - часть системы связи от входа кодера до выхода декодера. На входе и выходе этого канала передаваемые сообщения имеют вид кодовых комбинаций первичного кода. Этот канал служит для задания требований, т.е. нормирования потока комбинаций первичного кода по вероятности искажения кодовой комбинации первичного кода. Реализация этих требований позволяет снизить вероятность ошибки в комбинации первичного кода, поступающей к получателю, до заданной величины. Поэтому канал передачи данных называют защищенным от ошибок каналом.

Основными параметрами системы ПДС являются достоверность , скорость и надежность передачи дискретных сообщений.

Достоверность определяется следующими характеристиками:

  • вероятностью ошибочного приема кодовых символов в результате неправильного решения РУ при искажениях длительности единичных элементов;

p ;

для существующих дискретных каналов p=10 -4 ÷10 -2 ;

  • вероятностью искажения кодовых комбинаций первичного кода, поступающих на вход канала передачи данных и выдаваемых получателю сообщений с ошибками в результате наличия ошибок в кодовых символах;

для этой вероятности принято обозначение p(≥1,ℓ), что означает наличие хотя бы одной ошибки в комбинации первичного кода длины ;

для существующих каналов передачи требуемыми значениями являются p(≥1,ℓ)≤10 -9 ÷10 -6 .

Для определения скорости передачи дискретных сообщений существует два подхода.

Первый подход – информационный . Он требует умения измерять количество информации в сообщениях на выходе канала передачи данных относительно входных сообщений. При этом скорость передачи информации определяется как отнесенное к единице времени количество информации об ансамбле входных сообщений, содержащееся в выходных сообщениях.

Максимальную скорость передачи информации при заданных характеристиках канала, когда максимум берется по всем возможным вероятностным характеристикам сигнала, подаваемого на его вход, называют пропускной способностью канала или системы связи.

Второй подход – структурный . Он основан на подсчете структурных единиц сообщения, поступающих в приемник в некоторые временные интервалы.

Находят применение следующие характеристики скорости передачи дискретных сообщений:

  • скорость передачи единичных элементов (R е) – величина, обратная единичному интервалу, измеряемому в секундах.

Единицей измерения этой скорости является с -1 ;

  • скорость передачи битов данных (R б) – количество битов, переданных за единицу времени. Единицей измерения этой скорости является бит/с . Определяется по формуле:

R б = R е ·log 2 m ,

где m – число значащих позиций на длине единичного элемента;

  • относительная скорость передачи данных (R о) – отношение числа битов данных, выданных получателю данных к общему числу переданных битов;
  • эффективная скорость передачи данных (R э) – отношение числа битов данных, выданных получателю данных к общему времени передачи:

R э =R о ·R б.

  • Одной из наиболее часто используемых характеристик надежности передачи дискретных сообщений является надежность своевременной доставки сообщений , или вероятностно-временная характеристика доведения(доставки) сообщения. Она определяется следующим образом:

Р(t дов ≤Т зад)≥Р доп,

что означает: вероятность доведения(доставки) сообщения за время t дов , не превышающее некоторое заданное время Т зад , должна быть не меньше допустимой вероятности Р доп .

102 страницы (Word-файл)

Посмотреть все страницы

Фрагмент текста работы

2.1. Структура курса. Основные термины и определения. Структура единой сети электросвязи (ЕСЭ) РФ. Методы коммутации в сетях передачи данных. Виды сигналов. Параметры цифровых сигналов данных.

2.2. Структурная схема системы передачи дискретных сообщений. Непрерывный канал и КПТ. Краевые искажения и дробления. Методы регистрации. Дискретный канал. Каналы с памятью. Расширенный дискретный канал и его параметры. Характеристики СПДС.

2.3. Принципы эффективного кодирования. Метод Хаффмана. Словарные методы ZLW.

2.4. Помехоустойчивое кодирование. Линейные коды. Производящая и проверочная матрицы линейного кода Хемминга. Кодер. Декодер. Циклические коды. Построение кодера и его работа. Декодер с обнаружением ошибок.

Алгоритм определения ошибочного разряда. Декодеры с исправлением ошибок. Кодек Рида-Соломона. Итеративные и каскадные коды. Сверточные коды. Построение кодера и его работа. Диаграмма состояний и решетчатая диаграмма. Декодирование по алгоритму Витерби.

2.5. Адаптивные системы. Системы с ИОС. Системы с РОС-ОЖ. Расчет достоверности и скорости передачи информации.

2.6. Методы сопряжения источника дискретных сообщений с дискретным каналом. DTE/DCE, RS-232 и др.

2.7. Синхронизация. Виды поэлементной синхронизации. Техническая реализация. Расчет параметров синхронизации. Групповая, цикловая синхронизация.

2.8. УПС. Классификация. Перекодирование. АМ, ЧМ, ФМ. Модуляторы и демодуляторы. Относительная фазовая модуляция. Многопозиционная фазовая и амплитудно-фазовая модуляции. DMT, Треллис модуляция. Обзор xDSL технологии. OFDM. Радиомодемы, спутниковые модемы.

2.9. Компьютерные сети ПД. Принципы построения. Классификация. Назначение ЛВС. Типы ЛВС. Топологии сетей. Основные среды передачи в ЛВС. Технологии сетей передачи данных в операторских сетях. Корпоративные сети ПД, VPN. Модель взаимодействия открытых систем. Сетевые модели OSI и IEEE. Взаимодействия между уровнями. Примеры протоколов разных уровней. Стеки протоколов. Методы доступа к среде передачи. Сетевые архитектуры: Ethernet, Token Ring. Устройства расширения ЛВС. Репитер, мост, коммутатор, маршрутизатор, IP адресация.

Методы маршрутизации. Взаимодействие прикладных процессов через протокол TCP. Шлюзы.

ОСНОВЫ ПЕРЕДАЧИ ДИСКРЕНЫХ СООБЩЕНИЙ

Лекция №1.

Структура курса. Основные термины и определения.

Лекций 34 часа;

Практические занятия 17 часов;

Лабораторные работы 17 часов.

Темы лекций:

1. Структура курса. Основные термины и определения;

2. Структурная схема системы ПДС;

3. Принцип эффективного кодирования;

4. Помехоустойчивое кодирование;

5. Методы сопряжения источника дискретных сообщений и дискретным каналом;

6. Синхронизация;

7. Устройства преобразования сигналов (УПС);

8. Адаптивные системы;

9. Методы коммутации в сети ПДС;

10. Компьютерные сети передачи данных.

Документальная электросвязь – это такой вид электросвязи, где сообщение можно отобразить на какой-либо носитель (бумага, экран монитора).

Службы:

Телеграфные ТГСОП;

Телефонные;

Телексные АТ/Телекс;

Факсимильные СФС:

Факс-сервер; сети

Дэйтафакс;

Передача газетных полос ПГП;

Видеотекст (электронная почта).

Телематические.

Способы распределения информации в сетях ПДС:

1. Коммутация каналов;

2. Коммутация с накоплением:

Коммутация сообщений;

Коммутация пакетов.

Коммутация каналов (КК) – установка соединения, передача сообщения в обе стороны, разрушение.

Коммутация каналов:

Коммутация с накоплением. ТФСОП :

УУ – Управляющее устройство;

НУ – Накопительное устройство;

ВЗУ – Внешнее запоминающее устройство.

Сообщение передается по участкам сети, запоминается в УК. Состоит из заголовка и данных. Отсутствует фаза установления и разъединения.

Заголовок читается Находится адрес УК Получатель

Коммутация сообщений (КС) ТГСОП.

Заголовок состоит из семи уровней. На каждом уровне сообщение обрабатывается и хранится во внешней памяти.

Основной минус КС в том, что необходимо иметь большую память, так как передаются сообщения разных длин.

Примечание: ЦКС на ЭВМ (ЦКС – центр. ком. сообщ.).

В компьютерных сетях, телематических службах (почтовые сообщения).

Коммутация пакетов:

Сообщение разбивается на пакеты. Отсутствует НУ. Время задержки сообщений меньше. Высокая скорость обработки.

Применяется в:

Компьютерных сетях;

Ethernet: на 1 и2 уровне заголовок сохраняется, а затем нет;

ТФСОП; ССПО

Используют коммутацию пакетов протоколов.

NGN – Next Generation Network (пакетная сеть);

IP – телефония.

На транспортном уровне используются следующие протоколы:

ТСР (с установлением виртуального соединения (виртуальный канал));

UDP – (без установления соединения (датаграммный режим)).

ВВК – Временной виртуальный коммутатор (устанавливается пользователем).

ПВК – Постоянный временной канал (устанавливается администратором).

В датаграммном режиме каждый пакет передается независимо друг от друга. Используется для передачи коротких сообщений.

Протокол ТСР более надежный.

Перемешивание пакетов – пакеты проходят по разным путям, появляются в разное время.

Лекция №2.

Структурная схема системы ПДС.

В основном система передачи данных использует коммутацию пакетов.

Все системы используют дискретные сообщения. Для передачи которых используются дискретные сигналы (двухуровневые).

е.э – единичный элемент.

Такой сигнал поступает в канал связи, в зависимости от канала необходимо делать преобразование. В канале связи на сигнал действуют помехи – внешние и внутренние. Поэтому используется помехоустойчивое кодирование.

Источник ДС (0:1) Канал связи (0:1) ДС Получатель

В телеграфной связи помехоустойчивое кодирование применяется редко.

Для телематических служб и СПД – обязательно.

Для передачи сообщений кроме помехоустойчивого кодирования часто используют методы сжатия информации.

Структурная схема системы ДЭС:

ИС – источник сообщения, поступ. дискр. сообщ., еще называется кодером источника или оборудованием обработки данных.

УЗО – устройство защиты от ошибок, добавляет проверочные «r» битов к битам информации «к», еще называется канальным кодером.

УПС – устройство преобразования сигнала – преобразует сигнал в форму, подходящую для передачи в канал связи.

УЗО и УПС объединяются в АПД – аппаратуру передачи данных.

ПС – приемник сообщений.

ДК – дискретный канал.

КПД – канал передачи данных.

В качестве первичного кода используется МКТ-2 (n=5, ).

На муждугородной связи – МКТ-5 (СКПД) =128.

Первичные коды не могут обнаруживать и исправлять ошибки.