В нормальном состоянии газы являются хорошими электрическими изоляторами. Однако, приложив достаточно сильное электрическое поле, можно вызвать нарушение их изолирующих свойств, благодаря чему появляется возможность пропускать через газ значительные токи. Прохождение тока через газ по историческим причинам получило название электрического «разряда».

Возникающие при этом явления зависят от рода и давления газа, от материала, из которого изготовлены электроды, от геометрии электродов и окружающего их сосуда, а также от протекающего тока. Различные формы разряда получили специальные названия, как-то: темный разряд, корона, тлеющий разряд и т. д. Мощные разряды, однако, даже при различных условиях обладают рядом общих особенностей, позволяющих объединить их под одним названием — «дуговой разряд».

Термин «дуга» применяется только к устойчивым или квазиустойчивым видам разряда. Дугой принято считать конечную форму разряда, развившегося при любых обстоятельствах, если через газ проходит достаточно большой ток. Такой разряд можно получить различными путями.

Во-первых, дуга может возникнуть в результате непрерывного или скачкообразного перехода из какого-либо устойчивого маломощного (например, тлеющего) разряда. Такой путь возникновения дуги показан на рисунке. Предполагается, что пpo6oй уже произошел и что разрядный ток имеет небольшую постоянную величину. Если постепенно увеличивать ток, напряжение между электродами будет изменяться по кривой, изображенной на рисунке. Разряд будет проходить при этом через несколько различных стадий. В точке Е начинается крутой спад напряжения до довольно низкого значения и возникает дуговой разряд. Приведенная кривая характерна для разряда, горящего между электродами, удаленными один от другого на несколько сантиметров, в трубке диаметром несколько сантиметров, содержащей газ при давлении несколько миллиметров ртутного столба. Числовые значения тока и напряжения даны только для указания порядка величин. Напряжение есть функция тока (вернее, плотности тока), а не наоборот, за исключением возможного разрыва непрерывности, обозначенного пунктирной линией FG, переход от очень малых значений тока в точке F к характерным для дугового разряда большим значениям в точке Н происходит плавно через ряд устойчивых состояний. Но он не может произойти весьма быстро, если приложить к электродам сразу большое напряжение в отсутствие последовательно включенного сопротивления, ограничивающего быстрый рост тока до значения, соответствующего точке Н. В этом случае промежуточные этапы не успевают достигнуть равновесия и ход кривой напряжения имеет несколько иной вид.

Во-вторых, дуга может развиться из неустойчивого переходного искрового разряда. В этом случае дуга может быть получена, например, если разряд возникает между электродами в газе при давлении порядка атмосферного под действием напряжения, способного вызвать пробой промежутка и поддерживать ток при значении, достаточном для горения дуги. Все промежуточные стадии перед дуговым разрядом являются неустойчивыми, и, если напряжение недостаточно для поддержания тока дуги, разряд гаснет или становится прерывистым. В этих условиях напряжение между электродами не будет больше функцией только или даже главным образом тока, но зависит также и от времени. Поэтому ход процесса лучше изображать с помощью кривой тока и кривой напряжения в зависимости от времени (рисунок). Из этого рисунка видно, что за промежуток времени порядка 10^-8 сек происходит крутой спад напряжения от значения, близкого к пробивному; после этого наблюдается более или менее резко выраженная «ступенька» (которой иногда может и не быть). Спустя примерно 10^-6 сек напряжение составляет лишь несколько десятков вольт. Затем происходит постепенное приближение к устойчивому состоянию, которое наступает лишь после установления теплового равновесия для электродов и сосуда. Этот процесс может длиться несколько минут. На рисунке точка А соответствует началу резкого спада напряжения. Между началом пробоя и моментом спада напряжения в точке A может пройти относительно большой промежуток времени (время формирования). Неустойчивый разряд, возникающий в точке А, называется искрой.

В-третьих, дугу можно получить, раздвигая два токонесущих, первоначально соприкасавшихся электрода. Этот способ зажигания дуги широко применяется на практике, так как в этом случае нет нужды в пробоя газа между электродами. Другими словами, отпадает необходимость в источнике высокого напряжения, требующегося для пробоя газа; достаточна значительно меньшая величина напряжения, обеспечивающая поддержание уже установившегося дугового разряда. Возникший указанным путем разряд называется дугоразмыкания. То обстоятельство, что между раздвигающимися контактами может загораться дуга, бывает часто неблагоприятным. Такие дуги возникают между контактами выключателей. Их бывает трудно гасить и они оказывают разрушающее действие на выключатель.

  • 2.1.3. Условия гашения дуги постоянного тока
  • 2.1.4. Энергия, выделяемая в дуге
  • 2.1.5. Условия гашения дуги переменного тока
  • Лекция № 3
  • 2.1.6. Способы гашения электрической дуги
  • 2.1.7. Дугогасительные устройства постоянного и переменного тока
  • 2.1.8. Применение полупроводниковых приборов для гашения дуги
  • Лекция № 4
  • 2.2. Электрические контакты
  • 2.2.1.Общие сведения
  • 2.2.2. Режимы работы контактов
  • 2.2.3. Материалы контактов
  • 2.2.4. Конструкция твёрдометаллических контактов
  • 2.2.5. Жидкометаллические контакты
  • 2.2.6. Расчёт контактов аппаратов
  • Лекция № 5
  • 2.3. Электродинамические усилия в электрических аппаратах
  • 2.3.1. Общие сведения
  • 2.3.2. Методы расчёта электродинамических усилий (эду)
  • 2.3.3. Усилия между параллельными проводниками
  • 2.3.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
  • 2.3.5. Усилия в витке, катушке и между катушками
  • Лекция № 6
  • 2.3.6. Усилия в месте изменения сечения проводника
  • 2.3.7. Усилия при наличии ферромагнитных частей
  • 2.3.8. Электродинамические усилия при переменном токе
  • 2.3.9. Электродинамическая стойкость электрических аппаратов
  • 2.3.10. Расчёт динамической стойкости шин
  • Лекция 7
  • 2.4. Нагрев электрических аппаратов
  • 2.4.1. Общие сведения
  • 2.4.2. Активные потери энергии в аппаратах
  • 2.4.3. Способы передачи тепла внутри нагретых тел и с их поверхности
  • 2.4.4. Установившийся режим нагрева
  • 2.4.5. Нагрев аппаратов в переходных режимах
  • 2.4.6. Нагрев аппаратов при коротком замыкании
  • 2.4.7. Допустимая температура частей электрических аппаратов
  • 2.4.8. Термическая стойкость электрических аппаратов
  • Лекция № 8
  • 3.1. Электромагнитные контакторы переменного тока
  • 3.1.1. Назначение контакторов
  • 3.1.2. Классификация контакторов
  • 3.1.3. Область применения контакторов
  • 3.1.4. Узлы контактора и принцип его действия; физические явления, происходящие в электрическом аппарате
  • 3.1.5. Параметры контакторов
  • Лекция № 9
  • 3.1.6. Контакторы переменного тока, их конструкция и параметры
  • 3.1.6.1.Контактная система
  • 3.1.6.2. Электромагнитные системы: физические явления, происходящие в электрических аппаратах
  • 3.1.6.3. Конструкция контакторов переменного тока
  • 3.1.6.4. Контакторы серии кт6600
  • 3.1.6.5. Контакторы серии кт64 и кт65
  • 3.1.6.6.Контакторы серии мк
  • 3.1.6.7. Контакторы переменного тока на напряжение 1140 в
  • 3.1.6.8. Контакторы переменного тока вакуумные
  • 3.1.6.9. Выбор, применение и эксплуатация контакторов
  • Лекция № 10
  • 3.2. Электромагнитные контакторы постоянного тока
  • 3.2.1. Режимы работы контакторов, физические явления, происходящие в электрических аппаратах
  • 3.2.2. Контакторы постоянного тока, их конструкция и параметры
  • 3.2.3. Контакторы серии кпв-600
  • 3.2.4. Контакторы типа ктпв-600
  • 3.2.5. Контакторы типа кмв. Контакторы серии кп81
  • 3.2.6. Выбор электрических аппаратов
  • 3.3.3. Конструкция и схема включения
  • 3.3.4. Магнитные пускатели серии пмл
  • 3.3.5. Пускатели серии пма
  • 3.3.6. Нереверсивные пускатели
  • 3.3.7. Схема включения нереверсивного пускателя
  • 3.3.8. Реверсивный магнитный пускатель
  • 3.3.9. Схема включения реверсивного пускателя
  • 3.3.10. Выбор магнитных пускателей
  • Лекция №12
  • 4.1. Электромагнитные реле
  • 4.1.1. Назначение и область применения реле
  • 4.1.2. Классификация реле
  • 4.1.3.Устройство и принцип действия и электромагнитных реле, физические явления в электрических аппаратах
  • Поляризованные электромагнитные системы
  • 4.1.4. Основные характеристики и параметры реле
  • 4.1.5. Требования, предъявляемые к реле
  • 4.1.6. Согласование тяговых и противодействующих характеристик реле
  • 4.1.7. Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода
  • 4.1.8. Выбор, применение и эксплуатация максимально-токовых реле
  • Iуст.(1,3 – 1,5)Iпуск,
  • I уст 0,75i пуск.
  • 4.2.2. Основные параметры герконового реле
  • 4.2.3. Конструкции герконовых реле
  • 4.2.4. Реле тока на герконе
  • 4.2.5. Поляризованные гр
  • 4.2.6. Управление герконом с помощью ферромагнитного экрана
  • Лекция № 15
  • 5.1. Тяговые электромагниты
  • 5.1.1. Основные понятия, физические явления в электрических аппаратах
  • 5.1.2. Энергия магнитного поля и индуктивность системы
  • 5.1.3. Работа, производимая якорем магнита при перемещении
  • 5.1.4. Вычисление сил и моментов электромагнита
  • 5.1.5. Электромагниты переменного тока
  • 5.1.6. Короткозамкнутый виток
  • 5.1.7. Статические тяговые характеристики электромагнитов и механические характеристики аппаратов
  • Лекция № 17
  • 6.1. Предохранители низкого напряжения
  • 6.1.1. Назначение, принцип действия и устройство предохранителя
  • 6.1.2. Параметры предохранителя
  • 6.1.3. Конструкция предохранителей
  • 6.1.4. Предохранители с гашением дуги в закрытом объёме
  • 6.1.5. Предохранители с мелкозернистым наполнителем (пн-2, прс)
  • 6.1.8. Предохранитель-выключатель
  • 6.1.9. Выбор, применение и эксплуатация предохранителя для защиты электродвигателя и полупроводниковых устройств
  • Лекция № 18
  • 6.2 Автоматические воздушные выключатели (автоматы)
  • 6.2.1. Назначение, классификация и область применения автоматов
  • 6.2.2. Требования, предъявляемые к автоматам
  • 6.2.3. Узлы автомата и принцип его действия, физические явления в электрическом аппарате
  • 6.2.4. Основные параметры автомата
  • 6.4. Изменение тока цепи и напряжения на контактах в процессе отключения
  • 6.2.5. Универсальные и установочные автоматы
  • 6.2.8. Выбор, применение и эксплуатация автоматических воздушных выключателей
  • Лекция № 23
  • 7.4. Токоограничивающие реакторы
  • 7.4.1. Назначение, область применения и принцип работы реактора, физические явления в электрическом аппарате
  • 7.4.2. Основные параметры реактора
  • Лекция № 24
  • 7.5. Разрядники
  • 7.5. Назначение, область применения разрядников
  • 7.5.1. Требования, предъявляемые к разрядникам
  • 7.5.2. Основные параметры разрядников
  • 7.5.4. Конструкции разрядников, физические явления в них
  • 7.5.5. Трубчатые разрядники, физические явления в них
  • 7.5.8. Ограничители перенапряжения, физические явления в электрических аппаратах
  • 7.5.9. Выбор разрядников
  • Лекция № 25
  • 7.6. Предохранители высокого напряжения
  • 7.6.1. Назначение предохранителей
  • 7.6.2. Требования, предъявляемые к предохранителям вн
  • 7.6.3. Принцип действия, устройство и основные параметры предохранителей вн, физические явления в электрических аппаратах
  • 7.6.4. Предохранители с мелкозернистым наполнителем серий пк и пкт
  • 7.6.5. Предохранители серии пктн
  • 7.6.6. Предохранители с автогазовым, газовым и жидкостным гашением дуги
  • 7.6.7. Выбор, применение и эксплуатация предохранителей вн
  • I отк. Пред I кз. Уст лекция № 26
  • 8.1. Измерительные трансформаторы тока (тт)
  • 8.1.1.Назначение, принцип действия, включение трансформатора тока
  • 8.1.2. Основные параметры трансформаторов тока
  • 8.1.3. Режимы работы трансформаторов тока
  • I"1апер,i2апер,I"0апер– кривые апериодической составляющей первичного, вторичного тока и апериодической составляющей намагничивающего тока
  • 8.1.4. Конструкция и принцип действия трансформаторов тока, физические явления в электрическом аппарате
  • 8.1.5. Выбор трансформаторов тока
  • Список рекомендованной литературы
  • Список вопросов кзачетупо ЭиЭа
  • 2.1.1. Свойства дугового разряда

    В коммутационных ЭА, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250-300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.

    Если ток в цепи напряжения выше значений = 0,03-0,9 А, то имеет место дуговой разряд. Основные свойства дугового разряда:

    1.Дуговой разряд имеет место только при токах большой величины. Минимальный ток дуги для различных материалов и для металлов составляет 0,5А.

    2. Температура центральной части дуги очень велика и в аппаратах может достигать 6000-25000 К.

    3. Плотность тока на катоде чрезвычайно велика и достигает .

    4. Падение напряжения у катода составляет всего 10-20 В и практически не зависит от тока.

    В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги и околоанодную.

    Электрическая сварочная дуга

    Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.

    Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.

    С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.

    Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.

    Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.

    В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы - к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и "выбивают" из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.

    Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.

    Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.

    Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).

    Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).

    В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).

    При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.

    Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.

    Строение дуги Lк - катодная область; Lа - анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст - столб дуги; Lд - длина дуги; Lд = Lк + Lа + Lст

    К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).

    Влияние на дугу магнитных полей

    При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:

    Столб сварочной дуги резко откланяется от нормального положения; - дуга горит неустойчиво, часто обрывается; - изменяется звук горения дуги - появляются хлопки.

    Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.

    Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.

    В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.

    Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.

    Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.

    Уменьшить влияние магнитного дутья на сварочный процесс можно:

    Выполнением сварки короткой дугой; - наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья; - подведением токоподвода ближе к дуге.

    Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.

    У электродов в прианодной и в прикатодной областях имеет место резкое падение напряжения: катодное Ukи анодноеUa. Величина этого падения напряжения зависит от материалов электродов и от газа (15В – 30В). В остальной части дуги, называемой стволом, падение напряжения прямопропорционально длине дугиlд. Градиент приблизительно постоянен вдоль ствола и достигает от 100 до 200 В/см. Итоговое напряжение на дуге

    Uд=Uк+Uа+lд∙Ед

    В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов:

    • тлеющий разряд;
    • искровой разряд;
    • дуговой разряд;
    • коронный разряд.
    • 1. Тлеющий разряд возникает при низких давлениях. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами (рис. 8.5). Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой 2.

      Между катодом и пленкой находится астоново темное пространство 1. Справа от светящейся пленки помещается слабо светящийся слой, называемый катодным темным пространством 3. Этот слой переходит в светящуюся область, которую называют тлеющим свечением 4, с тлеющим пространством граничит тёмный промежуток – фарадеево тёмное пространство 5. Все перечисленные слои образуют катодную часть тлеющего разряда. Вся остальная часть трубки заполнена святящимся газом. Эту часть называют положительным столбом 6.

      При понижении давления катодная часть разряда и фарадеево тёмное пространство увеличивается, а положительный столб укорачивается.

      Измерения показали, что почти все падения потенциала приходятся на первые три участка разряда (астоново темное пространство, катодная святящаяся плёнка и катодное тёмное пятно). Эту часть напряжения, приложенного к трубке, называют катодным падением потенциала .

      В области тлеющего свечения потенциал не изменяется – здесь напряженность поля равна нулю. Наконец, в фарадеевом тёмном пространстве и положительном столбе потенциал медленно растёт.

      Такое распределение потенциала вызвано образованием в катодном темном пространстве положительного пространственного заряда, обусловленного повышенной концентрацией положительных ионов.

      Положительные ионы, ускоренные катодным падением потенциала, бомбардируют катод и выбивают из него электроны. В астоновом темном пространстве эти электроны, пролетевшие без столкновений в область катодного тёмного пространства, имеют большую энергию, вследствие чего они чаще ионизируют молекулы, чем возбуждают. Т.е. интенсивность свечения газа уменьшается, но зато образуется много электронов и положительных ионов. Образовавшиеся ионы в начале имеют очень малую скорость и потому в катодном тёмном пространстве создаётся положительный пространственный заряд, что и приводит к перераспределению потенциала вдоль трубки и к возникновению катодного падения потенциала.

      Электроны, возникшие в катодном тёмном пространстве, проникают в область тлеющего свечения, которая характеризуется высокой концентрацией электронов и положительных ионов коленарным пространственным зарядом, близким к нулю (плазма). Поэтому напряженность поля здесь очень мала. В области тлеющего свечения идёт интенсивный процесс рекомбинации, сопровождающийся излучением выделяющейся при этом энергии. Таким образом, тлеющее свечение есть, в основном, свечение рекомбинации.

      Из области тлеющего свечения в фарадеево тёмное пространство электроны и ионы проникают за счёт диффузии. Вероятность рекомбинации здесь сильно падает, т.к. концентрация заряженных частиц невелика. Поэтому в фарадеевом тёмном пространстве имеется поле. Увлекаемые этим полем электроны накапливают энергию и часто в конце концов возникают условия, необходимые для существования плазмы. Положительный столб представляет собой газоразрядную плазму. Он выполняет роль проводника, соединяющего анод с катодными частями разряда. Свечение положительного столба вызвано, в основном, переходами возбужденных молекул в основное состояние.

      2. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга (рис. 8.6). Эти полоски называют искровыми каналами .

      Т газа = 10 000 К

      ~ 40 см I = 100 кА t = 10 –4 c l ~ 10 км

      После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

      В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке 8.7 изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3 с силой тока 10 4 – 10 5 А, длиной 20 км (рис. 8.7).

      3. Дуговой разряд . Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным, возникает новая форма газового разряда, называемая дуговым разрядом (рис. 8.8).

      ~ 10 3 А
      Рис. 8.8

      При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Согласно В.Ф. Литкевичу (1872 – 1951), дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

      4. Коронный разряд (рис. 8.9).возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие).

      Наличие второго электрода необязательна, но его роль могут играть ближайшие, окружающие заземленные металлические предметы. Когда электрическое поле вблизи электрода с большой кривизной достигает примерно 3∙10 6 В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

    Виды газового разряда и их применение. Понятие о плазме.

    Отделение:

    Бухгалтерского учета и права

    Специальность:

    Правоведение

    Группа:

    Составила:

    Евтихевич А. А.

    Преподаватель:

    Орловская Г. В.

    2011 год
    Содержание:

    Страница 1: Газовый разряд

    Применение газового разряда

    Страница 2: Искровой разряд

    Коронный разряд

    Страница 3: Применение коронного разряда

    Страница 4: Дуговой разряд

    Страница 5: Применение дугового разряда

    Тлеющий разряд

    Страница 6-7: Плазма

    Страница 8: Литература

    Га́зовый разря́д - совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Обычно протекание тока становится возможным только после достаточной ионизации газа и образования плазмы. Ионизация происходит за счёт столкновений электронов, ускорившихся в электромагнитном поле, с атомами газа. При этом возникает лавинное увеличение числа заряженных частиц, поскольку в процессе ионизации образуются новые электроны, которые тоже после ускорения начинают участвовать в соударениях с атомами, вызывая их ионизацию. Для возникновения и поддержания газового разряда требуется существование электрического поля, так как плазма может существовать только если электроны приобретают во внешнем поле энергию, достаточную для ионизации атомов, и количество образованных ионов превышает число рекомбинировавших ионов.

    Если для существования газового разряда необходима дополнительная ионизация за счёт внешних источников (например, при помощи ионизирующих излучений), то газовый разряд называется несамостоятельным (такие разряды используются в счётчиках Гейгера).

    Для осуществления газового разряда применяют как постоянные во времени, так и переменные электрические поля.

    В зависимости от условий, при которых происходит образование носителей заряда (давление газа, напряжение, приложенное к электродам, форма и температура электродов), различают несколько типов самостоятельных разрядов: тлеющий, искровой, коронный, дуговой.

    Применения газового разряда

    • Дуговой разряд для сварки и освещения.
    • Сверхвысокочастотный разряд.
    • Тлеющий разряд как источник света в люминесцентных лампах и плазменных экранах.
    • Искровой разряд для зажигания рабочей смеси в двигателях внутреннего сгорания.
    • Коронный разряд для очистки газов от пыли и других загрязнений, для диагностики состояния конструкций.
    • Плазмотроны для резки и сварки.
    • Разряды для накачки лазеров, например гелий-неонового лазера, азотного лазера, эксимерных лазеров и т. д.
    • в счётчике Гейгера,
    • в ионизационных вакуумметрах,
    • в тиратронах,
    • в крайтронах,
    • в гейслеровой трубке.

    Искровой разряд . Присоединим шаровые электроды к батарее конденсаторов и начнем заряжать конденсаторы при помощи электрической машины. По мере заряжения конденсаторов будет увеличиваться разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе. Пока напряженность поля невелика, в газе нельзя заметить никаких изменений. Однако при достаточной напряженности поля (около 30000 в/см) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Конденсаторы в этой установке добавлены для того, чтобы сделать искру более мощной и, следовательно, более эффектной.
    Описанная форма газового разряда носит название искрового разряда, или искрового пробоя газа. При наступлении искрового разряда газ внезапно, скачком, утрачивает свои изолирующие свойства и становится хорошим проводником. Напряженность поля, при которой наступает искровой пробой газа, имеет различное значение у разных газов и зависит от их состояния (давления, температуры). При заданном напряжении между электродами напряженность поля тем меньше, чем дальше электроды друг от друга. Поэтому, чем больше расстояние между электродами, тем большее напряжение между ними необходимо для наступления искрового пробоя газа. Это напряжение называется напряжением пробоя. Возникновение пробоя объясняется следующим образом. В газе всегда есть некоторое количество ионов и электронов, возникающих от случайных причин. Обычно, однако, число их настолько мало, что газ практически не проводит электричества. При сравнительно небольших значениях напряженности поля, с какими мы встречаемся при изучении несамостоятельной проводимости газов, соударения ионов, движущихся в электрическом поле, с нейтральными молекулами газа происходят так же, как соударения упругих шаров. При каждом соударении движущаяся частица передает покоящейся часть своей кинетической энергии, и обе частицы после удара разлетаются, но никаких внутренних изменений в них не происходит. Однако при достаточной напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя столкновениями может сделаться достаточной, чтобы ионизировать нейтральную молекулу при столкновении. В результате образуется новый отрицательный электрон и положительно заряженный остаток – ион. Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома, - работой ионизации. Величина работы ионизации зависит от строения атома и поэтому различна для разных газов. Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивают число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, этот процесс «усиливает сам себя», и ионизация в газе быстро достигает очень большой величины. Все явления вполне аналогично снежной лавине в горах, для зарождения которой бывает достаточно ничтожного комка снега. Поэтому и описанный процесс был назван ионной лавиной. Образование ионной лавины и есть процесс искрового пробоя, а то минимальное напряжение, при котором возникает ионная лавина, есть напряжение пробоя. Мы видим, что при искровом пробое причина ионизации газа заключается в разрушении атомов и молекул при соударениях с ионами. Одним из природных представителей искрового разряда является молния – красивая и не безопасная.
    Коронный разряд . Возникновение ионной лавины не всегда приводит к искре, а может вызвать и разряд другого типа – коронный разряд. Натянем на двух высоких изолирующих подставках металлическую проволоку AB диаметром в несколько десятых миллиметра и соединим ее с отрицательным полюсом генератора, дающего напряжение в несколько тысяч вольт, например, хорошей электрической машине. Второй полюс генератора отведем к Земле. Мы получим своеобразный конденсатор, обкладками которого являются наша проволока и стены комнаты, которые, конечно, сообщаются с Землей. Поле в этом конденсаторе весьма неоднородно, и напряженность его очень велика вблизи тонкой проволоки. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение («корона»), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, соединенным с другим полюсом генератора. Ток в воздухе между проволокой AB и стенами переносится ионами, образовавшимися в воздухе благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха по действием электрического поля. Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле.
    Применение коронного разряда
    1) Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной. Внутри стеклянной трубки содержатся два электрода: металлический цилиндр и висящая по его оси тонка металлическая проволока. Электроды присоединены к электрической машине. Если продувать через трубку струю дыма (или пыли) и привести в действие машину, то, как только напряжение сделается достаточным для образования короны, выходящая струя воздуха станет совершенно чистой и прозрачной, и все твердые и жидкие частицы, содержащиеся в газе, будут осаждаться на электродах.
    Объяснение опыта заключается в следующем. Как только у проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы, соударяясь с частицами пыли, «прилипают» к последним и заряжают их. Так как внутри трубки действует сильное электрическое поле, то заряженные частицы движутся под действием поля к электродам, где и оседают. Описанное явление находит себе в настоящее время техническое применение для очистки промышленных газов в больших объемах от твердых и жидких примесей.
    2) Счетчики элементарных частиц. Коронный разряд лежит в основе действия чрезвычайно важных физических приборов: так называемых счетчиков элементарных частиц (электронов, а также других элементарных частиц, которые образуются при радиоактивных превращениях). Один из типов счетчика (счетчик Гейгера – Мюллера) показан на рис 1.
    Он состоит из небольшого металлического цилиндра A, снабженного окошком, и тонкой металлической проволоки натянутой оп оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник напряжения В в несколько тысяч вольт. Напряжение выбирают таким, чтобы оно было только немного меньше «критического», т. е. Необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона последний ионизует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток.
    Возникающий в счетчике ток настолько слаб, что обычным гальванометром его обнаружить трудно. Однако его можно сделать вполне заметным, если в цепь ввести очень большое сопротивление R и параллельно ему присоединить чувствительный электрометр E. При возникновении в цепи тока I на концах сопротивления создается напряжение U, равное по закону Ома U=IxR. Если выбрать величину сопротивления R очень большой (много миллионов ом), однако значительно меньшей, чем сопротивление самого электрометра, то даже очень слабый ток вызовет заметное напряжение. Поэтому при каждом попадании быстрого электрона внутрь счетчика листочек электрометра будет давать отброс.
    Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частички, способные производить ионизацию газа путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные частички.
    Дуговой разряд . В 1802 г. В. В. Петров установил, что если присоединить к полюсам большой электролитической батареи два кусочка древесного угля и, приведя угли в соприкосновение, слегка их разделить, то между концами углей образуется яркое пламя, а сами концы углей раскаляются добела. Испуская ослепительный свет (электрическая дуга). Это явление семь лет спустя независимо наблюдал английский химик Дэви, который предложил в честь Вольта назвать эту дугу «вольтовой».
    Обычно осветительная сеть питается током переменного направления. Дуга, однако, горит устойчивее, если через нее пропускают ток постоянного направления, так что один из ее электродов является все время положительным (анод), а другой отрицательным (катод). Между электродами находится столб раскаленного газа, хорошо проводящего электричество. В обычных дугах этот столб испускает значительно меньше света, нежели раскаленные угли. Положительный уголь, имея более высокую температуру, сгорает быстрее отрицательного. Вследствие сильной возгонки угля на нем образуется углубление – положительный кратер, являющийся самой горячей частью электродов. Температура кратера в воздухе при атмосферном давлении доходит до 4000 °C.
    Дуга может гореть и между металлическими электродами (железо, медь и т. д.). При этом электроды плавятся и быстро испаряются, на что расходуется много тепла. Поэтому температура кратера металлического электрода обычно ниже, чем угольного (2000-2500 °C).
    Заставляя гореть дугу между угольными электродами в сжатом газе (около 20 атм), удалось довести температуру положительного кратера до 5900 °C, т. е. до температуры поверхности Солнца. При этом условии наблюдалось плавление угля.
    Еще более высокой температурой обладает столб газов и паров, чрез который идет электрический разряд. Энергичная бомбардировка этих газов и паров электронами и ионами, подгоняемыми электрическим полем дуги, доводит температуру газов в столбе до 6000-7000 °. Поэтому в столбе дуги почти все известные вещества плавятся и обращаются в пар, и делаются возможными многие химические реакции, которые не идут при более низких температурах. Нетрудно, например, расплавить в пламени дуги тугоплавкие фарфоровые палочки.
    Для поддержания дугового разряда нужно небольшое напряжение: дуга хорошо горит при напряжении на ее электродах 40-45 в. Ток в дуге довольно значителен. Так, например, даже в небольшой дуге, идет ток около 5 А, а в больших дугах, употребляющихся в промышленности, ток достигает сотен ампер. Это показывает, что сопротивление дуги невелико; следовательно, и светящийся газовый столб хорошо проводит электрический ток.
    Такая сильная ионизация газа возможна только благодаря тому, что катод дуги испускает очень много электронов, которые своими ударами ионизуют газ в разрядном пространстве. Сильная электронная эмиссия с катода обеспечивается тем, что катод дуги сам накален до очень высокой температуры (от 2200° до 3500°C в зависимости от материала). Когда для зажигания дуги мы в начале приводим угли в соприкосновение, то в месте контакта, обладающем очень большим сопротивление, выделяется почти все джоулево тепло проходящего через угли тока. Поэтому концы углей сильно разогреваются, и этого достаточно для того, чтобы при их раздвижении между ними вспыхнула дуга. В дальнейшем катод дуги поддерживается в накаленном состоянии самим током, проходящие через дугу. Главную роль в этом играет бомбардировка катода падающими на него положительными ионами.
    Применение дугового разряда
    Вследствие высокой температуры электроды дуги испускают ослепительный свет, и поэтому электрическая дуга является одним из лучших источников света. Она потребляет всего около 0,3 ватта на каждую свечу и является значительно более экономичной. Нежели наилучшие лампы накаливания. Электрическая дуга впервые была использована для освещения П. Н. Яблочковым в 1875 г. и получила название «русского света», или «северного света».
    Электрическая дуга также применяется для сварки металлических деталей (дуговая электросварка). В настоящее время электрическую дугу очень широко применяют в промышленных электропечах. В мировой промышленности около 90% инструментальной стали и почти все специальные стали выплавляются в электрических печах.
    Большой интерес представляет ртутная дуга, горящая в кварцевой трубке, так называемая кварцевая лампа. В этой лампе дуговой разряд происходит не в воздухе, а в атмосфере ртутного пара, для чего в лампу вводят небольшое количество ртути, а воздух выкачивают. Свет ртутной дуги чрезвычайно богат невидимыми ультрафиолетовыми лучами, обладающими сильным химическим и физиологическим действием. Ртутные лампы широко применяют при лечении разнообразных болезней («искусственное горное солнце»), а также при научных исследованиях как сильный источник ультрафиолетовых лучей.
    Тлеющий разряд . Кроме искры, короны и дуги, существует еще одна форма самостоятельного разряда в газах – так называемый тлеющий разряд. Для получения этого типа разряда удобно использовать стеклянную трубку длинной около полуметра, содержащую два металлических электрода. Присоединим электроды к источнику постоянного тока с напряжение в несколько тысяч вольт (годится электрическая машина) и будем постепенно откачивать из трубки воздух. При атмосферном давлении газ внутри трубки остается темным, так как приложенное напряжение в несколько тысяч вольт недостаточно для того, чтобы пробить длинный газовый промежуток. Однако когда давление газа достаточно понизится, в трубке вспыхивает светящийся разряд. Он имеет вид тонкого шнура (в воздухе – малинового цвета, в других газах – других цветов), соединяющий оба электрода. В этом состоянии газовый столб хорошо проводит электричество.
    При дальнейшей откачен светящийся шнур размывается и расширяется, и свечение заполняет почти всю трубке. Различают следующие две части разряда: 1) несветящуюся часть, прилегающую к катоду, получившую название темного катодного пространства; 2) светящийся столб газа, заполняющий всю остальную часть трубки, вплоть до самого анода. Эта часть разряда носит название положительного столба.
    А работает это вот как. При тлеющем разряде газ хорошо проводит электричество, а значит, в газе все время поддерживается сильная ионизация. При этом в отличие от дугового разряда катод все время остается холодным. Почему же в этом случае происходит образование ионов?
    Падение потенциала или напряжения на каждом сантиметре длины газового столба в тлеющем разряде очень различно в разных частях разряда. Получается, что почти все падение потенциала приходится на темное пространство. Разность потенциалов, существующая между катодом и ближайшей к нему границей пространства, называют катодным падением потенциала. Оно измеряется сотнями, а в некоторых случаях и тысячами вольт. Весь разряд оказывается существует за счет этого катодного падения.
    Значение катодного падения заключается в том, что положительные ионы, пробегая эту большую разность потенциалов, приобретают большую скорость. Так как катодное падение сосредоточено в тонком слое газа, то здесь почти не происходит соударений ионов с газовыми атомами, и по этому, проходя через область катодного падения, ионы приобретают очень большую кинетическую энергию. Вследствие этого при соударении с катодом они выбивают из него некоторое количество электронов, которые начинают двигаться к аноду. Проходя через темное пространство, электроны в свою очередь ускоряются катодным падением потенциала и при соударения с газовыми атомами в более удаленной части разряда производят ионизацию ударом. Возникающие при этом положительные ионы опять ускоряются катодным падением и выбивают из катода новые электроны и т. д. Таким образом все повторяется до тех пор пока на электродах есть напряжение.
    Значит мы видим, что причинами ионизации газа в тлеющем разряде являются ударная ионизация и выбивание электронов с катода положительными ионами.
    Такой разряд используют в основном для освещения. Применяется в люминесцентных лампа.

    Словом «плазма» (от греч. «плазма» - «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881-1957) и Леви Тонко (1897-1971) назвали плазмой ионизованный газ в газоразрядной трубке. Английский физик Уильям Крукс (1832-1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии». В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С-в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны - ионизуются и газ превращается в плазму. При температурах более 1 000 000 °С плазма абсолютно ионизована - она состоит только из электронов и положительных ионов. Плазма - наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности - это полностью ионизованная плазма. Внешняя часть земной атмосферы (ионосфера) тоже плазма. Ещё выше располагаются радиационные пояса, содержащие плазму. Полярные сияния, молнии, в том числе шаровые, - всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле. И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии - планеты, астероиды и пылевые туманности. Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд). ПЛАЗМА - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. В лабораторных условиях плазма образуется в электрическом разряде в газе, в процессах горения и взрыва. Когда луч лазера сфокусировали линзой, в воздухе в области фокуса вспыхнула искра, и там образовалась плазма. Это вызвало огромный интерес у физиков. Первые затравочные электроны появляются в результате вырывания их из атомов среды после одновременного поглощения нескольких фотонов световой волны. Энергия каждого фотона рубинового лазера равна 1, 78 эВ. Далее свободный электрон, поглощая фотоны, достигает энергии 10 эВ, достаточной для ионизации и рождения нового электрона в процессе столкновения с атомами среды. Разряд может гореть в течение длительного времени и светится ослепительно белым светом, на него невозможно смотреть без тёмных очков. Необычайно высокая температура- уникальное свойство оптического заряда- представляет большие возможности для использования его в качестве источника света. Возможность создания плазменного шнура световым излучением лазера открывает возможности для передачи энергии на расстояние. Носителями заряда в плазме являются электроны и ионы, образовавшиеся в результате ионизации газа. Отношение числа ионизованных атомов к полному их числу в единице объема плазмы называют степенью ионизации плазмы (а). В зависимости от величины а говорят о слабо ионизованной (а - доли процента), частично ионизованной (а - несколько процентов) к полностью ионизованной (а близка к 100%) плазме. Средние кинетические энергии различных типов частиц, составляющих плазму, могут быть разными. Поэтому в общем случае плазму характеризуют не одним значением температуры, а несколькими - различают электронную температуру Те, ионную температуру Тi и температуру нейтральных атомов Та. Плазму с ионной температурой Тi < 105 К называют низкотемпературной, а с Тi > 106 К - высокотемпературной. Высокотемпературная плазма является основным объектом исследования по УТС (управляемому термоядерному синтезу). Низкотемпературная плазма находит применение в газоразрядных источниках света, газовых лазерах, МГД - генераторах и др. Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы, и лампах дневного света, используемых в помещениях. А кроме того, в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах сверхвысоких частот (СВЧ), счётчиках космических частиц. Все так называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах (» 108 К и выше) В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

    Дуговой разряд (в дальнейшем Д.Р.) можно реализовать как самостоятельный, так и несамостоятельный. Самостоятельный д.р. может быть получен из тлеющего путем увеличения плотности тока (1÷100 А/см 2)От тлеющего, дуговой разряд, отличается процессами эмиссии электронов с катода. Основными видами эмиссии является термо и авто электронные эмиссии. В д.р. прикатодное падение потенциалов составляет несколько десятков вольт и близко к потенциалу ионизации атомов газа.Все д.р. классифицируются по 2 признакам:

    1) По преимущественному типу эмиссии –основными видом эмиссии является термоэлектронная наз. «дуга с горячим катодом», а при автоэлектронной – «дуга с холодным катодом.

    2) По роду среды в которой горит дуговой разряд: а) дуга в атмосфере газа или смеси газов – б)дуга в парах материала катода или анода –

    Основным элементом дуги является катодное пятно, которое обеспечивает интенсивную эмиссию, имеет высокую яркость свечения, резкая граница катодного пятна определяется зависимостью интенсивности свечения от температуры.Все дуговые разряды имеют положительный столб, соединяющийся с катодным пятном называемым кистью дуги.

    Чтобы стабилизировать положение положительного столба в пространстве используют 3 основных способа:

    1) стабилизация стенками; используется в дуговых люминесцентных лампах (ДРЛ, ДН)

    2) стабилизация столба потоками газа или жидкости

    3) стабилизация электродами. Реализуется короткая дуга с высокой силой тока с темп. плазмы в положительном столбе порядка 10 4 К. Такие дуги применяются в лампах ДРШ, ДКСШ,ДКСЛ.

    Параметры д.р. в значительной степени определяется давлением газа в положительном столбе -дуги низкого давления -дуги среднего давления - дуги высокого давления

    Дуги низкого давления : область давлений от 1 до 10 мм. рт. ст. , плотность тока на катоде может достигать 10 8 А/см 2 , механизмы эмиссии электронов до настоящего времени не имеют аналогичного описания. Характерной особенностью является то что при увеличении давления выше 10 мм. рт. ст. приводит к резкому уменьшению площади сечения столба. Этот эффект называется контракцией. Плазма “+” столба дуги низкого давления представляет неизотермическую плазму, в которой температура электронов на 1-2 порядка выше температуры атомов и ионов. При образовании “+” столба, потери заряженных частиц в следствии двуполярной диффузии на стенки уменьшается в результате уменьшается доля энергии разряда расходуемого на стенках. При повышении давления дуга низкого давления переходит в дугу высокого давления, в которой происходит изменение основных процессов в “+” столбе. В области низких давлений элементарные процессы “+” столба качественно подобны процессам тлеющего разряда.

    Ступенчатых процессов в области низкого давления нет. По мере увеличения давления увеличивается эффективность ступенчатых процессов, увеличивается частота столкновений. За время жизни атом испытывает дополнительные столкновения => увеличивается интенсивность линий соответствующих переходам м/у возбужденными состояниями. Доля излучения будет увеличиваться в длинноволновой области т.к. время жизни большое увеличивается эффективность неупругих ударов 2 рода => температура электронов начинает в среднем увеличении приближаться к температуре тяжелых частиц.