Теперь для интерполяции множеств можно использовать формулу (1). Она примет вид:

Чтобы осуществить построение переходного множества при некотором значении t ,нужно сначала построить множества и , далее найти их сумму.

Пример 4. Пусть – круг радиуса с центром в точке = (0;0), – круг радиуса с центром в некоторой точке . Тогда интерполяционное множество () – это круг с центром в точке , расположенной на отрезке / /, радиуса (рис.9).

Рис.9. Интерполяция двух кругов

Действительно, зафиксировав некоторое значение t (), построим множества и . Окажемся в условиях примера 2. Переписав его результат в текущих обозначениях, получаем нужное утверждение. Видим, что в этом случае переходные изображения (круги) примыкают к общим касательным, проведённым к двум исходным кругам, т.е. результаты интерполяции очень хорошо согласуются с нашими наглядными представлениями о переходных изображениях.

Замечание. Из свойств арифметических операций над множествами следует, что аналогичная картина получится при интерполяции двух любых кругов. Действительно, круг радиуса с центром в произвольной точке может быть представлен в виде суммы круга радиуса с центром в точке (0;0) и множества, состоящего из одной точки (равносильно вектора ): = + . Тогда интерполяционная формула даёт:

= = + .

Остаётся заметить, что семейство векторов , , является переходным от вектора к нулевому вектору.

Таким образом, для удобства осуществления интерполяции (выполнения арифметических операций) можно всегда брать множества (фигуры), примыкающие к началу координат, поскольку произвольные заданные множества сводятся к такой ситуации сдвигом на определённые векторы. Эти векторы затем нужно тоже проинтерполировать (с тем же значением параметра t ).

Среди важных особенностей метода отметим факт, что при интерполяции двух многоугольников, вершины интерполяционного многоугольника получаются интерполяцией (с тем же значением t ) вершин исходных многоугольников. Это следует из того, что арифметические операции над множествами определяются через арифметические операции над отдельными их векторами. Получить «экстремальный» вектор в переходном множестве можно лишь, складывая соответствующие «экстремальные» векторы в исходных множествах.

Пример 5. Пусть – квадрат 2 x 2 с правой нижней вершиной в начале координат, – прямоугольник 4 x 5 с левой нижней вершиной в начале координат (стороны обеих фигур параллельны осям координат) (рис. 10). Построим интерполяционное множество .

1 способ. Воспользуемся формулой (2) при . Построив множества
и (их границы на рисунке 10 проведены пунктирными линиями), находим их сумму. Получим прямоугольник .

Рис.10. Интерполяция прямоугольников на основе арифметических операций

2 способ. Сопоставим соответствующие вершины исходных прямоугольников (в данном случае их соответствие очевидно, на рис. 11 оно показано отрезками); проинтерполировав каждую из этих пар точек (векторов) с заданным , получим вершины интерполяционного множества (прямоугольника).

Рис.11. Интерполяция прямоугольников путём интерполяции вершин

Снова обсуждаемый метод интерполяции даёт такой результат, какой мы ожидали бы увидеть.

Пример 6. Пусть – прямоугольные равнобедренные треугольники с гипотенузой h =100 и общей вершиной в начале координат. Тогда в результате интерполяции по Минковскому при получим шестиугольник (интерполяционное множество ) (рис. 12).

Рис.12. Интерполяция симметричных треугольников

Вычисления по интерполяционной формуле (2) сразу приводят к указанному итогу. В отличие от предыдущего примера, в случае данных треугольников сопоставление вершин, осуществляемое методом Минковского, как и сам результат, оказывается несколько неожиданным. Действительно, попарная интерполяция «верхних» и «нижних» вершин треугольников при даёт соответственно «верхнюю» и «нижнюю» вершины шестиугольника. А вот вершины прямых углов треугольников «интерполируются» с каждой из «верхней» и «нижней» вершин другого треугольника.

Результат примера 6, конечно, оставляет вопросы. Однако если вдуматься, то вряд ли мы сможем предложить «логичный» вариант переходного множества. Изначально предполагалось интерполировать «близкие», сходные изображения. См. также ниже замечание об особенностях интерполяции противоположных векторов.

Ещё более удивителен следующий случай.

Пример 7. Пусть – отрезки на осях координат: ,

. Тогда – квадрат со стороной единица, нижние вершины которого расположены в точках (1;0) и (2;0) (рис. 13).

Рис.13. Интерполяция отрезков

Множества и представляют собой соответственно отрезки и . Складывая их /прибавляя к каждой точке (вектору) отрезка отрезок (всевозможные векторы из него)/, получаем квадрат. В условиях примера 7 по наглядным представлениям переходным множеством, очевидно, должен бы быть отрезок, но особенности метода интерполяции приводят к прямоугольнику.

Анализируя разобранные примеры, можно увидеть, что алгоритм Минковского даёт блестящие результаты в случаях, когда:

1) ,

2) получено из параллельным переносом,

3) Когда пункты 1 и 2 выполняются одновременно.

В других случаях работа алгоритма может быть неудовлетворительной. В частности, когда множества и получаются поворотом друг из друга. Корни такого положения вещей кроются в самом подходе: уже для векторов, между которыми значительный угол, результат интерполяции получается плохой (рис. 14).

Рис.14. Интерполяция векторов, образующих большой угол

Важным моментом в представленном методе является то, что на его «фундаменте» можно строить новые, более совершенные алгоритмы. Они имеют важный прикладной характер и активно используются в современной технике.

.

С этим связаны дополнительные ограничения на применение арифметических операций над множествами в алгоритмах.

Тем не менее, если использовать только положительные числа, всё выполняется. Такая структура в математике называется «конусом». Т.е. изображения с заданными на них операциями по Минковскому образуют «конус».

Установка свойств отображения

В приложении Image Processing Toolbox существует возможность настройки установок, которые контролируют некоторые свойства функций отображения изображений imshow и imtool. Например, использование установок приложения позволяет описать коэффициент увеличения, который применяется при выводе изображений с помощью функций imtool и imshow.

В рамках данного вопроса рассмотрим

  • Список установок, которые поддерживаются приложением.
  • Описание процесса получения текущих значений установок с использованием функции iptgetpref.
  • Описание процесса установки текущих значений установок с использованием функции iptsetpref.

Установки приложения

Приложение Image Processing Toolbox поддерживает несколько установок, которые влияют на способ отображения изображений с помощью функций imshow и imtool. В таблице приведен список установок и их короткое описание. Для получения более детальной информации относительно установок приложения и их значений см. описание функции iptsetpref.

Установки приложения Описание
ImshowBorder Этот параметр может принимать два значения - "loose" и "tight". Если параметр ImshowBorder принимает значение "loose", то изображение будет отображаться функцией imshow с отступом от края окна figure. Таким образом, в окне остается место для дополнительных надписей. Используется по умолчанию. Если параметр ImshowBorder принимает значение "tight", то изображение будет отображаться функцией imshow так, чтобы оно занимало все окно figure.
ImshowAxesVisible Этот параметр может принимать два значения - "on" и "off". Если параметр ImshowAxesVisible принимает значение "on", то при выводе изображения функцией imshow в окне figure будут дополнительно выведены оси координат. Если же параметр ImshowAxesVisible принимает значение "off", то оси координат выводиться не будут. Значение параметра "off" устанавливается по умолчанию.
ImshowInitialMagnification Управляет коэффициентом увеличения, который используется функцией imshow при выводе изображения.
ImtoolInitialMagnification Контролирует коэффициент увеличения в приложении Image Tool, которое используется для масштабирования изображений.

Получение значений установок приложения

Для определения текущих значений используется функция iptgetpref. Рассмотрим пример использования функции iptgetpref для определения значения свойства imtoolInitialMagnification.

Iptgetpref("ImtoolInitialMagnification") ans = 100

Для более детальной информации см. описание функции iptgetpref.

Установка значений свойств приложения

Для установки значений свойств приложения используется функция iptsetpref. Рассмотрим пример использования функции iptsetpref для установки свойств отображения, которые приводят к тому, что при вызове функции imshow будет изменятся размер окна отображения в соответствии с размерами отображаемого изображения и значением свойства "ImshowBorder".

Iptsetpref("ImshowBorder", "tight");

Для более детальной информации см. описание функции iptsetpref.

Пространственные преобразования

Рассмотрим основные функции пространственных преобразований, которые реализованы в приложении Image Processing Toolbox.

Терминология Описание основных терминов, которые используются при обработке изображений
Интерполяция Пространственный (или временной) прогноз значений неизвестных значений пикселей между истинными значениями пикселей.
Изменение размеров изображения с помощью функции imresize.
Вращение изображений Использование функции imrotate для поворота изображений.
Вырезание изображения Использование функции imcrop для вырезания прямоугольной части изображения.
Описание основных свойств пространственных преобразований в приложении.

Интерполяция

Как уже отмечалось выше, интерполяция - это пространственный (или временной) прогноз значений неизвестных значений пикселей между истинными значениями пикселей. Например, для изменения размеров изображений используется один из методов интерполяции. Методы двумерной интерполяции используются также при повороте изображений (функция imrotate) и при анализе изображений с помощью функции improfile.

Методы интерполяции

Приложение Image Processing Toolbox использует три встроенных алгоритма интерполяции:

  • Интерполяция по ближайшему соседу - используется значение ближайшего пикселя.
  • Билинейная интерполяция - используется интерполяция по билинейной поверхности.
  • Бикубическая интерполяция - используется интерполяция по бикубической поверхности.

Типы изображений

В функциях, которые используют интерполяцию, в качестве аргумента указывается название метода интерполяции. Для большинства функций это интерполяция с использованием значений ближайших пикселей. Этот метод дает приемлемые результаты для всех типов изображений и является единственным методом, который используется для индексных изображений. Для яркостных и RGB изображений лучше использовать билинейную или бикубическую интерполяцию, поскольку, в большинстве случаев, эти методы обеспечивают лучший результат, чем при использовании интерполяции с использованием значения ближайших пикселей.

Для RGB изображений интерполяция выполняется отдельно для красной, зеленой и синей составляющих. В принципе, это не совсем корректно, поскольку приводит к нарушению цветового баланса.

Для бинарных изображений интерполяция даст эффект, если проводить ее осознанно. При использовании билинейной или бикубической интерполяции вычисленные значения пикселей на результирующем изображении не всегда будут равны 0 или 1. Результат обработки также зависит от формата исходного изображения:

  • Если данные исходного изображения представлены в формате double, то результирующее изображение будет полутоновым и представленным в формате double. Таким образом, результирующее изображение не будет бинарным, поскольку содержит значения из диапазона между 0 и 1.
  • Если исходное изображение представлено в формате uint8, то результирующее изображение будет бинарным и представленным в формате uint8. Значения интерполирующих пикселей будут округлены к 0 и 1, а результирующее изображение будет представлено в формате uint8.

При использовании интерполяции с использованием значений ближайших пикселей результат будет всегда бинарным, так как значения интерполируемых пикселей берутся из исходного изображения.

Изменение размеров изображения

Для изменения размеров изображения используется функция imresize. При использовании функции imresize необходимо

  • Описать размер результирующего изображения.
  • Описать выбранный метод интерполяции.
  • Описать фильтр препарирования изображений.

При использовании функции imresize размер результирующего изображения можно указать двумя путями:

  • через описание коэффициента увеличения.
  • через описание размеров результирующего изображения.

Использование коэффициента увеличения

Для увеличения изображения необходимо, чтобы коэффициент увеличения был больше 1. Для уменьшения изображения необходимо, чтобы коэффициент увеличения находился в диапазоне между 0 и 1. Например, с помощью команды, которая написана ниже, реализуется увеличение изображения I в 1.25 раз.

I = imread("circuit.tif"); J = imresize(I,1.25); imshow(I) figure, imshow(J)

Описание размера результирующего изображения

Существует возможность описать размер результирующего изображения в виде вектора, который содержит два числа - количество строк и столбцов результирующего изображения. Рассмотрим пример создания результирующего изображения Y, которое состоит из 100 строк и 150 столбцов.

Y = imresize(X,)

Примечание. Если при описании размеров результирующего изображения не сохранены пропорции соотношения сторон исходного изображения, то результирующее изображение будет искажено.

Описание метода интерполяции

По умолчанию функция imresize для формирования результирующего изображения использует метод интерполяции на основе значений ближайших пикселей. Однако можно задать также другой метод интерполяции. В таблице приведен список опций, которыми задаются методы интерполяции в функции imresize.

Рассмотрим пример, когда функция imresize использует билинейную интерполяцию.

Y = imresize(X,,"bilinear")

Использование фильтров препарирования изображений

Изменение размеров изображения может привести к возникновению артефактов на изображении, что отражается на его качестве.

Поэтому при уменьшении изображений с использованием билинейной или бикубической интерполяции, функция imresize автоматически использует низкочастотный фильтр для уменьшения артефактов на результирующем изображении.

Функция imresize может не применять низкочастотный фильтр, если используется интерполяция по соседним элементам. Интерполяция по соседним элементам используется, в основном, для индексных изображений, а низкочастотная фильтрация для индексных изображений не применяется.

Также можно создать свой фильтр для проведения низкочастотной фильтрации. Для более детальной информации см. описание функции imresize.

Поворот изображений

Для поворота изображений используется функция imrotate. При использовании функции imrotate нужно указать два основных аргумента:

  1. изображение, которое нужно повернуть;
  2. угол поворота.

Угол поворота можно описать в градусах. Если задать положительное значение, то функция imrotate будет вращать изображение против часовой стрелки, если задать отрицательное значение, то функция imrotate буде вращать изображение по часовой стрелке. Рассмотрим пример поворота изображения I на 35 градусов против часовой стрелки.

J = imrotate(I,35);

В качестве необязательных аргументов в функции imrotate также можно описать

  1. метод интерполяции;
  2. размер результирующего изображения.

Описание метода интерполяции

По умолчанию, функция imrotate использует интерполяцию по соседним элементам для определения значений пикселей результирующего изображения. Также пользователь может использовать другой метод интерполяции. В таблице подан список поддерживаемых интерполяционных методов.

Рассмотрим пример поворота изображения на 35° против часовой стрелки с использованием билинейной интерполяции.

I = imread("circuit.tif"); J = imrotate(I,35,"bilinear"); imshow(I) figure, imshow(J)

Описание размера результирующего изображения

По умолчанию, функция imrotate создает результирующее больше, так чтобы поместить исходное изображение, которое размещено под указанным углом. Пикселям, которые находятся за пределами изображения, устанавливается значение 0 и они являются фоном результирующего изображения. Если в функции imrotate в качестве аргумента указать опцию "crop", то результирующее изображение будет обрезано до размеров исходного изображения. Для более детальной информации см. описание функции imrotate.

Вырезание изображений

Для выделения прямоугольной части изображения используется функция imcrop. При использовании функции imcrop необходимо указать два основных аргумента:

  1. исходное изображение;
  2. координаты прямоугольника, которым определяется площадь вырезания.

Существует также другой путь использования функции imcrop. Он заключается в том, что не всегда нужно указывать прямоугольник, который вырезается на изображении. Этот прямоугольник можно задать интерактивно. В этом случае курсор изменяет свой вид и принимает форму крестика. Нажатие на левую клавишу мыши свидетельствует о выборе одного угла прямоугольника, а место курсора в момент отпуска клавиши мыши свидетельствует о выборе другого угла. Таким образом поверх изображения будет наложен прямоугольник, который определяет вырезаемую часть изображения.

Imshow circuit.tif I = imcrop; imshow(I);

Выполнение основных пространственных преобразований

Для выполнения основных двумерных пространственных преобразований используется функция imtransform.

При использовании функции imtransform необходимо указать два основных аргумента:

  • исходное изображение;
  • структуру пространственных преобразований (TFORM), которая определяет тип нужных преобразований.

Описание типа преобразований

При описании типа преобразований необходимо использовать структуру TFORM. Существует два пути использования TFORM:

  • использование функции maketform;
  • использование функции cp2tform.

Использование maketform

При использовании функции maketform необходимо описать тип нужных преобразований. В таблице приведен список типов преобразований в алфавитном порядке, который поддерживается функцией maketform.

Тип преобразования Описание
"affine" Преобразования, которые включают сдвиг, поворот, масштабирование и другие похожие функции преобразования изображений. При этом прямые линии остаются прямыми, параллельные остаются параллельными, а прямоугольник может превратиться в параллелограмм.
"box" Отдельный случай аффинных преобразований, когда каждая размерность масштабируется независимо.
"composite" Структура двух или более преобразований.
"custom" Преобразование, которое определено пользователем и вызывается с помощью функции imtransform.
"projective" При этом типе преобразований прямые линии остаются прямыми, а параллельные сходятся в одной точке. Эта точка может находиться как в пределах изображения, так и за его пределами.

Использование cp2tform

При использовании функции cp2tform создается TFORM, когда необходимо выполнять такие преобразования, как подгонка данных, например, при полиномиальных преобразованиях.

Примечание. При использовании функции imtransform структура TFORM выполняет двумерные пространственные преобразования. Если изображение содержит больше, чем две размерности, например, RGB изображения, то двумерные преобразования автоматически применяются ко всем двумерным составляющим. Для определения n-мерных преобразований используется функция tformarray.

Выполнение преобразований

После определения типа преобразований в структуре TFORM, существует возможность их выполнения путем вызова функции imtransform.

Рассмотрим пример использования функции imtransform для выполнения проективных преобразований с изображением шахматной доски.

I = checkerboard(20,1,1); figure; imshow(I) T = maketform("projective",,... ); R = makeresampler("cubic","circular"); K = imtransform(I,T,R,"Size",,"XYScale",1); figure, imshow(K)

Различные опции функции imtransform контролируют разные аспекты преобразований. Например, как видно из предыдущего преобразования, отдельные установки должны контролировать количество и размещение копий исходного изображения на результирующем изображении. Также контролируется размер результирующего изображения. В приложении Image Processing Toolbox есть достаточно много примеров с использованием функции imtransform и других похожих функций, которые выполняют различные типы пространственных преобразований.

Линейная фильтрация и проектирование фильтров

Приложение Image Processing Toolbox содержит некоторое число функций, которые проектируют и реализуют двумерную линейную фильтрацию данных изображения. Рассмотри эти вопросы в таком порядке:

Рассмотрим еще некоторые термины, которые также буду в дальнейшем применяться при рассмотрении материала.

Термин Описание
Convolution (свертка) Операция над локальной окрестностью, где каждый результирующий пиксель представляет собой взвешенную сумму исходных пикселей. Вес определяется ядром свертки. С помощью операции свертки можно реализовать такие методы обработки изображений как сглаживание, повышение резкости и усиление границ объектов изображения.
convolution kernel (ядро свертки) Матрица весов, которая используется при выполнении свертки.
Correlation (корреляция) Операция над локальной окрестностью, где каждый результирующий пиксель представляет собой взвешенную сумму пикселей локальной окрестности. Весы определяются ядром корреляции. Понятие корреляции очень тесно связано с понятием свертки.
correlation kernel (ядро корреляции) Для реализации функции корреляции используется весовая функция. Ядра корреляции можно получить с помощью функции проектирования фильтров в Image Processing Toolbox. Ядра корреляции представляют собой ядро свертки, которое повернуто на 180 градусов.
FIR filter (фильтр с конечной импульсной характеристикой, КИХ-фильтр) В приложении существует ряд функций для расчета коэффициентов цифрового КИХ фильтра, в частности, методом Ремеза. Особенностью их использования является то, что исходные данные задаются в виде желаемой АЧХ произвольной сложности.
frequency response (частотная характеристика или частотный отклик) Математическая функция, с помощью которой можно оценивать работу фильтра на различных частотах.
neighborhood operation (операция с использованием значений соседних элементов) Операция, в результате которой значение каждого пикселя вычисляется на основе значений окрестных пикселей. Свертка, методы морфологической обработки и медианная фильтрация являются примерами операций с использованием соседних пикселей.
window method (локальные методы обработки) Методы обработки, при которых учитываются локальные особенности изображения.

Линейная фильтрация

Фильтрация представляет собой технологию модификации или улучшения изображения. Например, существует большое количество фильтров для усиления некоторых особенностей изображения или их удаления. Речь может идти о подчеркивании границ, выделении областей по некоторым признакам (например, цветовым) и т.п.

Как уже отмечалось ранее, существует ряд методов, в которых значения пикселей обработанного изображения вычисляются на основании значений окрестных пикселей. Разница между этими методами состоит в том, каким образом учитываются значения соседних пикселей. Отметим, что на основании значений соседних пикселей можно говорить об особенностях локальных окрестностей изображения.

Линейная фильтрация представляет собой такой вид обработки, при которой значения пикселей обработанного изображения формируются в результате линейных операций над значениями пикселей окрестности исходного изображения.

Поскольку этот вид фильтрации довольно часто применяется при обработке изображений, рассмотрим некоторые вопросы линейной фильтрации более детально, в частности

  • Фильтрация с использованием convolution и correlation.
  • Выполнение фильтрации с использованием функции imfilter и др.

Свертка

Линейная фильтрация изображений может быть реализована с помощью так называемой операции свертки. При реализации этой операции значения результирующих пикселей вычисляются как взвешенная сумма пикселей исходного изображения. Матрица весов называется ядром свертки, она известна еще как фильтр.

Рассмотрим пример. Пусть изображение представляет собой набор пикселей со значениями, представленными в виде матрицы

A =

а ядро свертки представлено таким образом

H =

Рассмотрим пример вычисления результирующего пикселя с координатами (2,4). Для этого необходимо выполнить следующие шаги:

  1. Развернуть ядро свертки на 180 градусов относительно центрального элемента.
  2. Умножить каждое значение веса в матрице свертки на соответствующее значение пикселя в матрице A.
  3. Просуммировать результат умножения.


Корреляция

Операция корреляции очень похожа на операцию свертки в плане реализации. При вычислении корреляции значение результирующего пикселя представляет собой взвешенную сумму окрестных пикселей. Разница состоит в том, что матрица весов перед вычислениями не поворачивается. Рассмотрим аналогичный пример вычисления значения результирующего пикселя (2,4). Исходная матрица изображения и ядро корреляции взяты из предыдущего примера. Для этого необходимо реализовать следующие шаги:

  1. Перемножаем каждое значение веса и на соответствующее значение элемента матрицы исходного изображения.
  2. Суммируем все результаты умножения, которые получены в п.1.

В результате значение пикселя (2,4) будет равно


Вычисление значения результирующего пикселя (2,4)

Рынок мобильных телефонов заполнен моделями с камерами с огромными разрешениями. Встречаются даже относительно недорогие смартфоны с сенсорами разрешением 16-20 Мп. Незнающий покупатель гонится за "крутой" камерой и отдает предпочтение тому телефону, у которого разрешение камеры выше. Он даже и не догадывается, что попадается на удочку маркетологов и продавцов.

Что такое разрешение?

Разрешение камеры - это параметр, который указывает на конечный размер изображения. Он определяет только то, насколько полученное изображение будет большим, то есть его ширину и высоту в пикселях. Важно: качество картинки при этом не изменяется. Фотография может получиться некачественной, но большой из-за разрешения.

Разрешение не влияет на качество. Нельзя было не упомянуть об этом в контексте интерполяции камеры смартфона. Теперь можно переходить непосредственно к сути.

Что такое интерполяция камеры в телефоне?

Интерполяция камеры - это искусственное увеличение разрешения изображения. Именно изображения, а не То есть это специальное программное обеспечение, благодаря которому снимок с разрешением 8 Мп интерполируется до 13 Мп или больше (или меньше).

Если проводить аналогию, то интерполяция камеры подобна или биноклю. Эти устройства увеличивают изображение, но не делают его более качественным или детализированным. Так что если в характеристиках к телефону указана интерполяция, то фактическое разрешение камеры может быть ниже заявленного. Это не плохо и не хорошо, это просто есть.

Для чего это нужно?

Интерполяцию придумали для увеличения размера изображения, не более того. Сейчас это уловка маркетологов и производителей, которые пытаются продать продукт. Они большими цифрами указывают на рекламном постере разрешение камеры телефона и позиционируют это как преимущество или нечто хорошее. Мало того, что само по себе разрешение не оказывает влияния на качество фотографий, так оно еще может быть интерполировано.

Буквально 3-4 года тому назад многие производители гнались за количеством мегапикселей и разными способами пытались впихнуть их в свои смартфоны сенсоры с как можно большим числом. Так появлялись смартфоны с камерами с разрешением 5, 8, 12, 15, 21 Мп. Фотографировать они при этом могли как самые дешевые мыльницы, но покупатели, увидев наклейку "Камера на 18 Мп", сразу хотели купить такой телефон. С появлением интерполяции продавать такие смартфоны стало проще из-за возможности искусственно добавить мегапикселей камере. Конечно, качество фото со временем начало расти, но точно не из-за разрешения или интерполяции, а из-за естественного прогресса в плане разработки сенсоров и программного обеспечения.

Техническая сторона

Что такое интерполяция камеры в телефоне технически, ведь весь текст выше описывал только основную идею?

С помощью специального программного обеспечения на изображении "рисуются" новые пиксели. Например, для увеличения изображения в 2 раза после каждой строки пикселей картинки добавляется новая строка. Каждый пиксель в этой новой строке заполняется цветом. Цвет заливки высчитывается специальным алгоритмом. Самый первый способ - залить новую строку цветами, которыми обладают ближайшие пиксели. Результат такой обработки будет ужасным, но зато подобный способ требует минимум вычислительных операций.

Чаще всего используется другой метод. То есть на исходное изображение добавляются новые строки пикселей. Каждый пиксель заливается цветом, который, в свою очередь, вычисляется как среднее значение соседних пикселей. Этот способ дает лучшие результаты, но требует больше вычислительных операций.

Благо, современные мобильные процессоры быстры, и на практике пользователь не замечает, как программа редактирует изображение, пытаясь искусственно увеличить его размер.

Есть много продвинутых способов и алгоритмов интерполяции, которые совершенствуются постоянно: улучшаются границы перехода между цветами, линии становятся более точными и четкими. Неважно, как построены все эти алгоритмы. Сама идея интерполяции камеры банальна и вряд ли приживется в ближайшем будущем. С помощью интерполяции невозможно сделать изображение более детализированным, добавить новые детали или улучшить его каким-либо еще образом. Только в фильмах маленькая размытая картинка после наложения пары фильтров становится четкой. На практике такого быть не может.

Нужна ли вам интерполяция?

Многие пользователи по своему незнанию задают на разных форумах вопросы, как сделать интерполяцию камеры, полагая, что это улучшит качество изображений. На самом деле интерполяция не только не улучшит качество картинки, но даже может сделать хуже, ведь к фотографиям будут добавляться новые пиксели, и из-за не всегда точного вычисления цветов для заливки на фото могут быть недетализированные участки, зернистость. В результате качество падает.

Так что интерполяция в телефоне - это маркетинговая уловка, которая совершенно не нужна. Она может увеличивать не только разрешение фото, но и стоимость самого смартфона. Не попадайтесь на уловки продавцов и производителей.

Для увеличения или уменьшения размера изображения Фотошоп использует метод Интерполяции. Так, например, при увеличении изображения, Фотошоп создает дополнительные пиксели на основе значений соседних. Грубо говоря, если один пиксель черный, а другой белый, то Фотошоп вычислит среднее значение и создаст новый пиксель серого цвета. Некоторые виды интерполяции быстрые и некачественные, другие более сложные, но с помощью них достигаются хорошие результаты.

Для начала пойдем в главное меню Изображение - Размер изображения (Image - Image Size) или Alt+Ctrl+I .

Если вы кликните по стрелочке около параметра Ресамплинг (Resample Image) , то в выплывающем окне появится несколько вариантов интерполяции:

  • Автоматически (Automatic) . Приложение Photoshop выбирает метод ресамплинга на основе типа документа и увеличения либо уменьшения его масштаба.
  • Сохранить детали (с увеличением) (Preserve details (enlargement)) . Если выбран этот метод, становится доступным ползунок Снижение шума для сглаживания шума при масштабировании изображения.
  • Сохранение деталей 2.0 (Preserve Details 2.0) . Этот алгоритм даёт очень даже интересный результат увеличения картинки. Конечно, детализация подробнее не становится, но та, что есть увеличивается довольно сильно не теряя чёткости.
  • . Хороший метод для увеличения изображений на основе бикубической интерполяции, разработанный специально для получения более гладких результатов.
  • Бикубическая (с уменьшением) (Bicubic Sharper (reduction)) . Хороший метод для уменьшения размера изображения на основе бикубической интерполяции с повышенной резкостью. Этот метод позволяет сохранить детали изображения, подвергнутого ресамплингу. Если интерполяция «Бикубическая, c уменьшением» делает слишком резкими некоторые области изображения, попробуйте воспользоваться бикубической интерполяцией.
  • Бикубическая (плавные градиенты) (Bicubic (smooth gradients)) . Более медленный, но и более точный метод, основанный на анализе значений цвета окружающих пикселей. За счет использования более сложных вычислений бикубическая интерполяция дает более плавные цветовые переходы, чем интерполяция по соседним пикселам или билинейная интерполяция.
  • По соседним пикселам (четкие края) (Nearest Neighbor (hard edges)) . Быстрый, но менее точный метод, который повторяет пиксели изображения. Этот метод сохраняет четкие края и позволяет создать файл уменьшенного размера в иллюстрациях, содержащих несглаженные края. Однако этот метод может создать зубчатые края, которые станут заметными при искажении или масштабировании изображения, или проведении множества операций с выделением.
  • Билинейная (Bilinear) . Этот метод добавляет новые пиксели, рассчитывая среднее значение цвета окружающих пикселей. Он дает результат среднего качества.

Пример использования Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) :

Есть фото, размеры 600 х 450 пикселей разрешение 72 dpi

Нам нужно его увеличить. Открывает окно Размер изображения (Image Size) и выбираем Бикубическая (с увеличением) (Bicubic Smoother (enlargement)) , единицы измерение - проценты.

Размеры документа сразу установятся на значения 100%. Далее будем постепенно увеличивать изображение. Измените значение 100% на 110%. Когда вы измените ширину, высота автоматически подгонится сама.

Теперь его размеры уже 660 х 495 пикселей. Повторяя данные действия можно добиться хороших результатов. Конечно, идеальной четкости нам добиться будет достаточно сложно, так как фото было маленькое и низкого разрешения. Но посмотрите, какие изменения произошли в пикселях.

Насколько большими мы можем делать фотографии благодаря методу интерполяции? Все зависит от качества фотографии, как оно было сделано и для каких целей вы его увеличиваете. Лучший ответ: возьмите и проверьте сами.

До встречи в следующем уроке!

Изменение разрешения путем интерполяции изображения

Лекция: Adobe Photoshop CS5 для дизайнера и фотографа

Adobe Photoshop CS5 - последняя версия легендарного графического редактора. Сам перевод названия программы "Фотомагазин" говорит о том, что это программа для фотографов. Программное обеспечение Adobe® Photoshop® CS5, соответствует мировым стандартам, позволяет создавать профессиональные изображения на высшем уровне. В новой версии вы сможете рисовать реалистичные иллюстрации, быстро создавать эффектные изображения HDR, устранять шумы, добавлять зернистость и настраивать виньетирование с помощью самых современных инструментов для обработки фотографий. В лекциях мы не будем глубоко вникать в теорию компьютерной графики, а заострим внимание на практике работы с фотоизображениями.

Основные понятия компьютерной графики

Для того, чтобы работать с Adobe Photoshop не механически, а с пониманием своих действий, пользователь должен иметь некоторые общие (базовые) представления о характеристиках цифровых изображений. Настоящая глава посвящена характеристикам растровых изображений, определяющим его качество. Дело в том, что любое цифровое изображение на компьютере характеризуются набором его таких параметров, как размер, разрешение, формат и тип цветовой модели. Перечисленные параметры и определяют качество растрового изображения, а также размер (вес) графического файла.

Разрешение изображения

Растровые изображения формируется из совокупности крошечных элементов, называемых пикселями. Пиксель является основным кирпичиком растровых изображений и это единица принята в компьютерной графике, подобно тому, как метр, килограмм и литр приняты для измерений в повседневной жизни.

Количество пикселей в изображении определяет его разрешение. Пиксели часто называют точками, тогда разрешение измеряется в dpi (dot per inch), то есть в количестве точек на дюйм.

Примечание

В компьютерной литературе существует путаница в терминах и некоторые из авторов разрешение мониторов измеряют в dpi (dot per inch), сканеров в ppi (pixel per inch) - пиксель на дюйм, а принтеров в lpi (line per inch) - линий на дюйм. Другие же авторы книг разрешение любого изображения, не зависимо от способа его получения измеряют только в dpi.

Если вдуматься, то становится очевидным, что чем выше разрешение, тем большее количество пикселей содержит изображение и тем большим количеством деталей (то есть - качеством) такое изображение характеризуется. С другой стороны, более высокое разрешение изображение прямо связано с большим размером файла такого изображения. Поэтому установка величины разрешения зависит от целей и задач компьютерного художника и для конкретной работы будет разной. Например, веб-дизайнеры обычно работают с изображениями 72-96 dpi, в то время как полиграфисты предпочитают разрешения изображений от 300 dpi и выше (рис. 1.1).

Рис. 1.1. Изображение высокого разрешения слева (файл 977 Кб) и низкого разрешения справа (файл 41 Кб)

Глубина цвета

В черно-белых изображениях уровни яркости представляются в виде оттенков серого цвета, а в цветных изображениях эти уровни проявляются в виде различных цветовых тонов. При этом очевидно, что черно-белая фотография воспринимается как менее качественная по сравнению с фотографией цветной. Иначе говоря, чем больше оттенков цвета в изображении, тем выше его яркостное (цветовое) разрешение, называемое глубиной цвета, и тем большее число уровней яркости (цветов) будет содержать файл такого изображения.

Новый термин

Глубина цвета характеризует число воспроизводимых градаций яркости пикселя в черно-белых изображениях и количество отображаемых цветов в цветном изображении.

Для примера на рис. 1.2 показано одно и то же изображение, но с разной глубиной цвета: в два цвета сверху, и в 256 оттенков серого снизу. Из этой иллюстрации наглядно видно, что чем выше число воспроизводимых градаций яркости пикселя в черно-белых изображениях (и количество отображаемых цветов в цветном изображении), тем качество растрового изображения выше.

Рис. 1.2. Одно и то же изображение, но с разной глубиной цвета

С точки зрения цветовой глубины растровые изображения можно разбить на несколько типов:

Для монохромного черно-белого (Black and White) изображения используются только два типа ячеек: черные и белые. Поэтому для запоминания каждого пикселя требуется только 1 бит памяти компьютера. Такие изображения часто называются 1-битовыми изображениями. Соответственно, их цветовая разрешающая способность будет равна 1 бит/пиксель.

В другом типе растровых изображений, называемом оттенки серого (Grayscale), на каждый пиксель выделяется до 8 бит информации. Это позволяет оперировать с комбинацией из 256 градаций яркости, перекрывающей весь диапазон оттенков серого от черного до белого. Пример десятиступенчатой шкалы оттенков серого приведен на рис. 1.3.

Рис. 1.3. Десять градаций серого цвета - от белого (100%) до черного (0%)

Для работы с изображениями, описание которых требует большого цветового разрешения, используются цветовые модели RGB, Lab и CMYK. В случае RGB-формата цвет каждого пикселя определяется комбинацией из трех цветов: красного, зеленого и голубого. В зависимости от назначения изображение может иметь 16 битовое, 24 битовое или 32 битовое цветовое разрешение (глубину цвета).

В CMYK-формате цвет каждого пикселя формируется с помощью четырех цветовых каналов: голубого, пурпурного, желтого и черного. Из-за наличия дополнительного канала цветовая модель CMYK содержит примерно на 25 процентов больше информации по сравнению с RGB-изображением.

Изменение разрешения путем интерполяции изображения

Если разрешение цифрового изображения, полученного посредством матрицы сканера (или цифровой фотокамеры) совпадает с числом светочувствительных элементов сканера (или камеры), то говорят о фактическом (аппаратном или физическом) разрешении. Однако как в аппаратуре оцифровки изображений, так и в графических программах предусмотрена возможность использования операции интерполяции (Resampling), то есть изменения разрешения, которая может быть реализована разными способами. Например, в программе Adobe Photoshop (рис. 1.4) реализованы три способа интерполяции - по соседним, билинейная и бикубическая.

Рис. 1.4. Способы интерполяции изображений в Adobe Photoshop

При интерполяции по соседним (Nearest Neighbor) для добавляемого программой пикселя берется значение пикселя соседнего с ним. То есть, если соседний пиксель красный, то и программа увеличивает разрешение изображения добавлением красного пикселя.



В случае билинейной (Bilinear) интерполяции графический редактор берет среднее цветовое значение пикселов с каждой стороны от вновь создаваемого. Например, между красным и белым цветом появится розовый.

Бикубическая (Bicubic) интерполяция усредняется значение группы не только непосредственно граничащих, но и всех соседних пикселов. Какой диапазон пикселов выбирается для усреднения и по какому алгоритму это усреднение происходит - этим отличаются способы бикубической интерполяции. На иллюстрации выше мы видим три варианта бикубической интерполяции в Adobe Photoshop.

Примечание

Разрешение изображения, полученное с помощью программной интерполяции всегда хуже реального (физического) разрешения, так как искусственное добавление пикселей снижает качество изображения (происходит потеря мелких его деталей). Иначе говоря, чем сильнее трансформируется изображение, тем больше оно деградирует.