«A table or view can have only one unique key .»
Oracle9i SQL Reference об ограничении использования Ограничений уникальности

Утверждение, представленное в качестве эпиграфа, взято из документации Oracle, но вся практика до прочтения документации указывала на противоположное. Проверка путём создания пары Unique Constraint -ов подтвердила это. Налицо ошибка в документации.

А что ещё (с надеждой на безошибочность описания) можно почерпнуть из документации об Ограничениях целостности в Oracle? Я постарался выписать различные терминологические и функциональные особенности Ограничений целостности как отдельных типов объектов БД Oracle без углубления в синтаксис и подробности их использования. Многое для меня оказалось новым, не буду скрывать.

Начнёмссамогоначала - Oracle9i Database Concepts Release 2 (9.2) . В документации выделяется понятие «Целостность данных» (Data Integrity ), которое связывается с выполнением бизнес-правил, сопряжённых с БД. Data Integrity делится на пять типов правил, часть из которых обеспечивается «Ограничениями целостности» (Integrity Constraints ) СУБД Oracle :

1. NULL -правило - NOT NULL ограничение;

2. уникальные значения - ограничения уникального ключа;

3. значения первичного ключа - ограничения первичного ключа;

4. правила ссылочной целостности - ограничения внешнего ключа (или «ограничения ссылочной целостности» - в документации Oracle встречаются оба названия);

5. проверка комплексного ограничения - Check -ограничения.

(Здесь слева от тире представлено правило «Целостности данных», а справа - тип «Ограничений целостности», реализующий это правило)

Четвёртый тип правил «Целостности данных» является составным, и обеспечивается «Ограничениями целостности» лишь частично:

1. выставление в NULL зависимых данных при удалении справочных данных;

2. каскадное удаление зависимых данных при удалении справочных данных;

3. а также отсутствие какого либо действия над зависимыми данными при изменении или удалении справочных данных. (Здесь для меня осталась неясность в плане отличия Restrict от No Action . Может, кто из читателей поможет обнаружить различие…)

Оставшиеся существующие подтипы четвёртого пункта «Целостности данных»:

o выставление в NULL зависимых данных при изменении справочных данных;

o каскадное изменении зависимых данных при изменении справочных данных;

o выставление в значение по умолчанию зависимых данных при изменении или удалении справочных данных;

Те типы правил «Целостности данных», которые нельзя обеспечить с помощью существующих типов «Ограничений целостности», можно реализовать с помощью триггеров. Впрочем, любые типы правил «Целостности данных» можно организовать посредством триггеров, только этот путь более сложен и менее производителен.

Далее для краткости и в силу привычки буду использовать названия «Ограничений целостности» в английском варианте (соотнесение с вышеупомянутыми русскими названиями, на мой взгляд, очевидно), а вместо «Ограничения целостности» писать просто Ограничения.

Итак, UNIQUE Key Constraint . Это Ограничение требует, чтобы каждое значение в поле ключа было уникальным. Под понятием «значение» здесь подразумевается определённая величина, а NULL-значение под данное определение не подпадает, так что одно, два, да даже все поля в ключе UNIQUE Key Constraint могут быть равны NULL. В отличие от ключа PRIMARY Key Constraint , в котором NULL-значение не допускается вовсе.

При создании UNIQUE Key Constraints или PRIMARY Key Constraints неявно создаётся уникальный индекс по тем полям таблицы, на которые накладывается данное Ограничение. Однако, если некий (неважно - уникальный или неуникальный) индекс по полям ключа уже используется, то будет использоваться именно он вместо неявного создания нового. При удалении этих Ограничений будут удаляться и индексы. Уникальные Ограничения, созданные с атрибутом DEFERRABLE (см. ниже) всегда используют неуникальные индексы. При удалении таких Ограничений неуникальные индексы остаются.

Referential Integrity Constraint требуетсуществованиявродительской (справочной) таблице UNIQUE Key Constraint или PRIMARY Key Constraint. При отсутствии Ограничения NOT NULL на каком либо поле, входящем в Referential Integrity Constraint , в этом поле

допускается NULL -значение, и такой Referential Integrity Constraint будет считаться правильным.

  • Если на внешнем ключе отсутствует индекс. Тогда при удалении или изменении первичного ключа родительской таблицы, Oracle будет выставлять блокировку дочерней таблицы на уровне таблицы, освобождая эту блокировку сразу после её получения. Если внешний ключ определён как ON DELETE CASCADE , то удаление записей из родительской таблицы будет приводить к share-subexclusive блокировкам на дочерней таблице. Разделяемая блокировка всей дочерней таблицы также потребуется при изменении тех полей в родительской таблице, на которые ссылаются поля дочерней таблицы. Разделяемая блокировка позволяет только чтение данных, так что ни вставка, ни удаление, ни изменение данных в дочерней таблице не будут доступны до тех пор, пока не завершится транзакция на родительской таблице.
  • Если на внешнем ключе присутствует индекс, то никаких блокировок на уровне таблицы уже не будет, и при любом удалении или изменении данных в родительской таблице, в дочерней таблице будут блокированы до завершения транзакции только отдельные соответствующие записи (эксклюзивная блокировка на уровне строк).

CHECK Integrity Constraints . Допускаются на одном или нескольких полях таблицы и требует в качестве результата выполнения определённого условия TRUE или UNKNOWN для каждой строки таблицы. Примечательно, что под UNKNOWN подразумевается… NULL! Иными словами, если везде (во всяком случае, следуя той же документации Oracle) NULL -значение не равно ничему, в том числе и самому себе, то здесь оно «работает» как TRUE . Забавно, не так ли?

Особенности:

  • может использоваться только Булево выражение;
  • нельзя использовать подзапросы, SQL-функции или последовательности (интересно, почему?);
  • нельзя использовать SYSDATE , UID , USE R, USERENV , LEVEL , ROWNUM .

Количество CHECK Integrity Constraints неограниченно, но порядок их срабатывания непредсказуем. Ну, и при использовании строчных литералов или таких SQL -функций, как TO_CHAR, TO_DATE, TO_NUMBER с параметрами поддержки глобализации в качестве аргументов, Oracle использует значения этих параметров по умолчанию на уровне базы. Эти значения можно переписать в создаваемом CHECK Integrity Constraint .

Все перечисленные Ограничения, реализованные в Orac le, допускают их нарушение на уровне оператора, то есть сначала оператор будет полностью выполнен (пускай он коснётся хоть миллиона строк), а потом начнётся проверка Ограничений. Хотя, возможна отложенная проверка Ограничений- до завершения транзакции (о чём речь далее).

Режим SET CONSTRAINTS.

Оператор SET CONSTRAINTS делает Ограничения или DEFERRED , или IMMEDIATE (DEFERRED и IMMEDIATE относятся к атрибутам Ограничений, о чём речь далее) для части транзакции. Данный оператор можно использовать для установки режима либо для списка Ограничений, либо для всех (ALL ) Ограничений. Действие данного оператора заканчивается вместе с завершением текущей транзакции, либо с началом действия ещё одного такого же оператора. Данный оператор недоступен в триггерах.

SET CONSTRAINTS … IMMEDIATE вначале вызывает проверку наличия отложенных ранее срабатываний Ограничений, а потом уже срабатывают Ограничения, вызванные выполняющимися операторами в текущей транзакции. Любое нарушение Ограничения при таком процессе будет просигнализировано ошибкой, а при достижении COMMIT’а будет вызван полный откат текущей транзакции. Оператор ALTER SESSION также может иметь выражение SET CONSTRAINTS , но только для всех Ограничений (нельзя их перечислить списком). Это эквивалентно выполнению оператора SET CONSTRAINTS в самом начале каждой транзакции.

Выполнение оператора SET CONSTRAINTS … IMMEDIATE перед самым завершением транзакции позволяет определить успешность предстоящего COMMIT’а и избежать лишних откатов.

Состояния Ограничений.

С помощью операторов CREATE TABLE или ALTER TABLE можно задавать состояние каждого Ограничения на уровне таблицы, используя следующие выражения:

  • ENABLE гарантирует удовлетворение всех входных данных Ограничению;
  • DISABLE позволяет входным данным не соответствовать Ограничению;
  • VALIDATE гарантирует, что все уже имеющиеся в таблице данные соответствуют Ограничению;
  • NOVALIDATE позволяет уже имеющимся в таблице данным не соответствовать Ограничению;

…и их комбинации:

  • ENABLE VALIDATE аналогично ENABLE и гарантирует, что абсолютно все (и уже вставленные, и вставляемые) записи удовлетворяют Ограничению;
  • ENABLE NOVALIDATE гарантирует удовлетворение Ограничению всех входных данных, однако уже имеющиеся в таблице данные могут не соответствовать Ограничению;
  • DISABLE NOVALIDATE аналогично DISABLE . Не гарантируется удовлетворение Ограничению как входных данных, так и уже имеющихся в таблице;
  • DISABLE VALIDATE отключает Ограничение, удаляет индекс, на котором оно строилось, и запрещает любые изменения на полях, входящих в Ограничение.

… и немного об особенностях применения:

· выражение ENABLE подразумевает ENABLE VALIDATE ;

· выражение DISABLE подразумевает DISABLE NOVALIDATE ;

· VALIDATE и NOVALIDATE ничего не подразумевают в отношении ENABLE и DISABLE (скажем так, они являются зависимой частью выражения при ENABLE и DISABLE );

· про создание и удаление индексов уже упоминалось;

· при изменении состояния из NOVALIDATE в VALIDATE выполняется проверка всех имеющихся в таблице данных, что может занять очень много времени. Наоборот, при приведении состояния Ограничения из VALIDATE в NOVALIDATE просто «забывается», что имеющиеся данные когда-то соответствовали Ограничению;

· перевод одиночного ограничения из состояния ENABLE NOVALIDATE в состояние ENABLE VALIDATE не блокирует чтения, записи или другие DDL операции, они могут быть выполнены параллельно.

И последние важные замечания.

  • При создании Ограничения можно указать в качестве атрибута, возможно ли в дальнейшем в ходе транзакции установить оператором SET CONSTRAINTS (см. выше) отложенную (DEFERRED ) проверку данного Ограничения. По умолчанию выставляется NOT DEFERRABLE (что оно означает, думаю, понятно). После создания Ограничения изменить значение выставленного атрибута нельзя, кроме как пересоздав Ограничение, так что «семь раз подумай»!
  • INIT IALLY является дополнительным атрибутом к DEFERRABLE, который может быть переписан оператором SET CONSTRAINT (опять см. выше), и который определяет поведение по умолчанию при срабатывании Ограничения с установленным атрибутом DEFERRABLE. При создании Ограничения по умолчанию выставляется INIT IALLY IMMEDIATE , тогда срабатывание Ограничения будет происходить каждый раз при выполнении отдельного оператора, при выставлении INIT IALLY DEFERRED срабатывание Ограничения будет отложено до окончания каждой транзакции. Для NOT DEFERRABLE такого дополнительного атрибута не требуется, так как он является INIT IALLY IMMEDIATE по определению.
  • Выражение RELY. По умолчанию при изменении Ограничения (с помощью ALTER TABLE или MODIFY constraint ) выставляется NORELY . А означает оно следующее: стоит ли Oracle"у принимать в расчёт Ограничение, находящеесяв состоянии NOVALIDATE, для перезаписи запроса? RELY активирует существующее Ограничение в режиме (здесь в документации SQL Reference используется слово «mode », хотя я уже привык к слову «state» из Concepts , - по-видимому, писали разные люди, позабыв договориться о терминах) NOVALIDATE, что позволит переписать запрос, который иначе мог быть переписанным только с Ограничением в режиме VALIDATE. Примерно так. Подробнее - в следующий раз.
  • EXCEPTIONS INTO определяет схему и таблицу, в которую будут внесены ROWID, нарушающие Ограничение при изменении его (Ограничения) состояния. Если имя схемы и таблицы не указать, то будет предполагаться, что нужно использовать таблицу с именем EXCEPTIONS в текущей схеме.
Вот и всё. На сегодня.

Ограничения базы данных

Эта статья посвящена ограничениям базы данных InterBase. Ограничения базы данных, - это правила, которые определяют взаимосвязи между таблицами и могут проверять и изменять данные в базе данных Реализованы эти правила в виде особых объектов базы данных.

Главное преимущество использования ограничений состоит в возможности реализовать проверку данных, а значит, и часть бизнес-логики приложения на уровне базы данных, т. е. централизовать и упростить ее, а значит, сделать разработку приложений баз данных проще и надежнее.

Часто начинающие разработчики пренебрегают использованием ограничений базы данных, считая, что они стесняют возможность творчества. Однако на самом деле такое мнение происходит от недостаточного знания теории и практики проектирования баз данных.

В то же время наиболее опытные разработчики позволяют себе отказаться от использования некоторых видов ограничений, за счет чего их приложения выигрывают в быстродействии. Опыт высококвалифицированных разработчиков позволяет им очень хорошо понимать работу сервера и точно предсказывать его поведение в сложных случаях, поэтому начинающим программистам InterBase лучше не апеллировать к подобным действиям опытных коллег.

В рамках данной книги мы не рассматриваем проектирование баз данных, поэтому для получения дополнительной информации по этому вопросу следует обратиться к списку литературы в конце книги. Здесь же мы лишь проведем обзор всех видов ограничений в базе данных InterBase и рассмотрим примеры их применения.

Виды ограничений в базе данных

Существуют следующие виды ограничений в базе данных InterBase:

  • первичный ключ - PRIMARY KEY;
  • уникальный ключ - UNIQUE KEY;
  • внешний ключ - FOREIGN KEY

Может включать автоматические триггеры ON UPDATE и ON DELETE;

  • проверки - CHECK.

Ограничения базы данных бывают двух типов - на основе одного поля и на основе нескольких полей таблицы. Синтаксис обоих видов ограничений приведен ниже.

= [ . . . ] = {UNIQUE | PRIMARY KEY | CHECK () | REFERENCES other_table [(other_col [, other_col ...])] }

Для ограничений на основе нескольких полей синтаксис следующий:

= [< tconstraint> ...] = {{PRIMARY KEY | UNIQUE} (col [, col ...]) FOREIGN KEY (col [, col ...]) REFERENCES other_table [ (other_col [ , other_col ...]) ] | CHECK ()}

Разница в синтаксисе между ограничениями на основе одного поля и на основе нескольких очевидна - в последних молено указать несколько полей, которые входя i в ограничение. В сд\чае ограничения на основе одного поля все описанные опции относятся только к текущему полю.

Конечно, у этих двух типов ограничений отличается способ их применения: ограничения на основе одного поля просто дописываются к определению нужного поля, а ограничения на основе нескольких полей указываются через запятую в общем определении таблицы. Подробные примеры приведены в следующих разделах этой главы.

Пример типичного ограничения

Фактически ограничения на основе одного поля являются частным сл\чаем ограничений на основе нескольких полей.

Пример создания ограничения первичного ключа с использованием этих двух различных подходов приведен ниже. Давайте создадим таблицу, содержащую только одно поле и наложим на нее ограничение первичного ключа.

Первичный ключ с использованием синтаксиса ограничения на основе одного поля.

Создание ограничений

Давайте рассмотрим создание ограничений подробнее. Первой в описании общего синтаксиса ограничений идет опция . Как видите, эта опция взята в квадратные скобки и, значит, необязательна.

С помощью этой опции можно задавать имя создаваемому ограничению и в случае использования синтаксиса ограничений на основе одного поля, и в случае ограничений на основе нескольких полей.

Если не указать имя для ограничения, InterBase автоматически сгенерирует его. Но лучше все же явно назначить имя создаваемому ограничению, чтобы улучшить читабельность схемы базы данных, а также упростить управление ограничениями в дальнейшем.

Назначив имя ограничению, необходимо определить его тип. Рассмотрим различные типы ограничений в том порядке, как они указаны в описании общего синтаксиса ограничений.

Первичный и уникальный ключи

Первичные ключи являются одним из основных видов ограничений в базе данных. Они применяются для однозначной идентификации записей в таблице. Допустим, мы храним в базе данных список людей. Вполне вероятно, что могут появиться два (или больше) человека с одинаковыми фамилией, именем и отчеством Как же гарантированно отличить одного человека от другого (конечно. речь идет о том, чтобы отличить одного человека от другого на основании информации, хранящейся в базе данных)?

В данном случае "человек" представлен одной записью в таблице, поэтому можно задаться более общим вопросом - как отличить одну запись в (любой) таблице от другой записи в этой же таблице. Для этого используются ограничения - первичные ключи. Первичный ключ представляет собой одно или несколько полей в таблице, сочетание которых уникально для каждой записи. Для одной таблицы не существует повторяющихся значений первичного ключа.

Уникальные ключи несут аналогичную нагрузку - они также служат для однозначной идентификации записей в таблице. Отличие первичных ключей от уникальных состоит в том, что первичный ключ может быть в таблице только один, а уникальных ключей - несколько. Надо отметить, что и первичный и уникальный ключ могут быть использованы в качестве ссылочной основы для внешних ключей (см. далее).

Синтаксис создания первичного и уникального ключа на основе единственного поля следующий:

UNIQUE}

Примеры первичных и уникальных ключей:

Синтаксис создания первичного и уникального ключей на основе нескольких полей:

= {PRIMARY KEY | UNIQUE) (col [, col ...])

Такой синтаксис позволяет создавать ключи на основе комбинации полей. Вот примеры создания первичных и уникальных ключей из нескольких полей:

Обратите внимание, что все поля, входящие в состав первичного и уникального ключей, должны быть объявлены как NOT NULL, так как эти ключи не могут иметь неопределенного значения.

Помимо создания ограничения первичных и уникальных ключей в момент создания таблицы имеется возможность добавлять ограничения в уже существующую таблицу. Для этого используется предложение DDL: ALTER TABLE. Синтаксис добавтения ограничений первичного или уникального ключа в существующую таблицу аналогичен описанному выше:

Затем добавляем ключи. Сначала первичный:

Важно отметить, что добавление (а также удаление) ограничений первичных и уникальных ключей к таблице может производить только владелец этой таблицы или системный администратор SYSDBA.

Внешние ключи

Следующим ограничением, которое часто используется в базах данных InterBase, является ограничение внешнего ключа. Это очень мощное средство для поддержания ссылочной целостности в базе данных, которое позволяет не только контролировать наличие правильных ссылок в базе данных, но и автоматически управлять этими ссылками!

Смысл создания внешнего ключа следующий: если две таблицы служат для хранения взаимосвязанной информации, то необходимо гарантировать, чтобы эта взаимосвязь была всегда корректной. Пример - документ "накладная", содержащий общий заголовок (дата, номер накладной и т. д.) и множество подробных записей (наименование товара, количество и т. д.).

Для хранения такого документа в базе данных создается две таблицы - одна для хранения заголовков накладных, а вторая - для хранения содержимого накладной - записей о товарах и их количестве. Такие таблицы называются главной и подчиненной или таблицей-мастером и деталь-таблицей.

Согласно здравому смыслу невозможно существование содержимого накладной без наличия ее заголовка. Другими словами, мы не можем вставлять записи о товарах, не создав заголовок накладной, а также не можем удалять запись заголовка, если существуют записи о товарах.

Для реализации такого поведения таблица заголовка соединяется с таблицей подробностей с помощью ограничения внешнего ключа.

Давайте рассмотрим смысл наложения ограничений внешнего ключа на примере таблиц, содержащих информацию о накладных.

Для этого создадим две таблицы для хранения накладной - таблицу TITLE для хранения заголовка и таблицу INVENTORY для хранения информации о товарах, входящих в накладную.

CREATE TABLE TITLE( IDJTITLE INTEGER NOT NULL Primary Key, DateNakl DATE, NumNakl INTEGER, NoteNakl VARCHAR(255));

Обратите внимание на то, что мы сразу определили первичный ключ в таблице заголовка на основе поля ID_TITLE. Остальные поля таблицы TITLE содержат тривиальную информацию о заголовке накладной - дату, номер, примечание.

Теперь определим таблицу для хранения информации о товарах, входящих в накладную:

CREATE TABLE INVENTORY( ID_INVENTORY INTEGER NOT NULL PRIMARY KEY, FK_TITLE INTEGER NOT NULL, ProductName VARCHAR (255), Kolvo DOUBLE PRECISION, Positio INTEGER);

Давайте рассмотрим, какие поля входят в таблицу INVENTORY. Во-первых, это ID_INVENTORY - первичный ключ этой таблицы. Затем идет целочисленное поле FK_TITLE, которое служит для ссылки на идентификатор заголовка ID_TITLE в таблице заголовков накладных. Далее идут поля ProductName, Kolvo и Positio. описывающие наименование товара, его количество и позицию в накладной.

Для нашего примера важнее всего поле FK_TITLE. Если мы захотим вывести информацию о товарах определенной накладной, то нам следует воспользоваться следу ющиУ1 запросом, в котором параметр mas_ID_TITLE определяет идентификатор заголовка:

SELECT * FROM INVENTORY II WHERE II.FK_TITLE=?mas_ID_TITLE

В сущности, в описываемой ситуации ничто не мешает заполнить таблицу INVENTORY записями, ссылающимися на несуществующие записи в таблице TITEE. Также ничего не препятствует удалению заголовка уже существующей накладной, в результате чего записи о товарах могут стать "бесхозными".

Сервер не будет препятствовать всем этим вставкам и удалениям. Таким образом, контроль за целостностью данных в базе данных полностью возлагается на клиентское приложение. А ведь с одной базой данных могут работать несколько приложений, разрабатываемых, быть может, разными программистами, что может привести к различной интерпретации данных и к ошибкам.

Поэтому необходимо явно наложить ограничение на то, что в таблиц} INVENTORY могут помещаться лишь такие записи о товарах, которые имеют корректною ССЫЛКУ на заголовок накладной. Собственно это и есть ограничение внешнего ключа, которое позволяет вставлять в поля, входящие в ограничения, только те значения, которые есть в другой таблице.

Такое ограничение можно организовать с помощью внешнего ключа. Для данного примера необходимо наложить ограничения внешнего ключа на поле FK_TITLE и связать его с первичным ключом ID_TITLE в TITEE. Добавить внешний ключ в уже существующую таблицу можно следующей командой:

ALTER TABLE INVENTORY ADD CONSTRAINT fktitlel FOREIGN KEY(FK_TITLE) REFERENCES TITLE(ID_TITLE)

Часто при добавлении внешнего ключа возникает ошибка object is in use (объект используется) Дело в ю, что для создания внешнею ключа, необходимо открьпь базу данных в монопольном режиме - чтобы оиювременно не бьпо других пользователей Также нетьзя производить никаких обращений к модифицируемой таблице-это может вызвать object is in use

Здесь INVENTORY - имя таблицы, на которую накладывается ограничение внешнего ключа; fktitlel - имя внешнего ключа; FK_TITLE - поля, составляющие внешний ключ; TITLE - имя таблицы, предоставляющей значения (ссылочную ОСНОВУ) для внешнего ключа; ID_TITLE - поля первичного или уникального ключа в таблице TITLE которые являются ссылочной основой для внешнего ключа.

Полный синтаксис ограничения внешнего ключа (с возможностью создавать ограничения на основании нескольких полей) приведен ниже:

= FOREIGN KEY (col [, col }) REFERENCES other_table [ (other__col [ , other_col ...] } ]

Как видите, определения содержат большой набор опций. Для начала давайте рассмотрим базовое определение внешнего ключа, которое наиболее часто используется в реальных базах данных, а затем разберем возможные опции.

Чаще всего употребляются декларативная форма ограничения внешнего ключа, когда указывается набор полей (col [, col ...]), которые будут составлять ограничение; таблица other_table, которая содержит в полях [(other_col [, other_col ...]) список возможных значений для внешнего ключа.

Пример такого определения при создании таблицы:

CREATE TABLE Inventory2( ... FK_TABLE INTEGER NOT NULL CONSTRAINT fkinv REFERENCES TITLE(ID_TITLE) ...) ;

Обратите внимание, что в этом определении опущены ключевые слова FOREIGN KEY, а также подразумевается, что в качестве внешнего ключа будет использоваться единственное поле - FK_TITLE.

А в следующем примере приведена более полная форма создания внешнего ключа одновременно с таблицей:

CREATE TABLE Inventory2( ... FK_TABLE INTEGER NOT NULL, CONSTRAINT fkinv FOREIGN KEY (FKJTABLE) REFERENCES TITLE(IDJTITLE) ...) ;

Использование NULL в полях внешнего ключа

В полях, на основе которых создается внешний ключ, допускается применение NULL-полей. Эта возможность добавлена для разрешения взаимных ссылок. Например, еспи есть две таблицы, ссылающиеся друг на друга с помощью внешних ключей Ьсли не разрешить пустую ссылку (т. е. на NULL) в этих внешних ключах, то в связанные таблицы невозможно будет добавить ни одной записи: чтобы добавить запись в первую таблицу, надо будет иметь запись во второй таблице, и наоборот.

Использование NULL в качестве пустой ссылки позволяет организовать взаимные ссылки двух перекрестно ссылающихся таблиц, а также хранить иерархические структуры в реляционных таблицах - при этом корневые узлы ссылаются на "п\стые" записи (т. е. просто содержат NULL).

Расширенные возможности поддержки ссылочной целостности с помощью внешнего ключа

Обычно вполне достаточно декларативного варианта ограничения внешнего ключа, при котором сервер только следит за тем, чтобы в таблицу с внешним ключом нельзя было вставить некорректные значения или - при попытке сделать это возникает ошибка. Но InterBase позволяет выполнять ряд автоматических действий при изменении/удалении внешнего ключа. Для этого служит следующий набор опций внешнего ключа:

SET NULL}]

Эти опции позволяют определить различные действия при изменении или удалении значения внешнего ключа.

Например, мы можем указать, что при удалении первичного ключа в таблице-мастере необходимо удалять все записи с таким же внешним ключом в подчиненной таблице. Для этого следует так определить внешний ключ:

ALTER TABLE INVENTORY ADD CONSTRAINT fkautodel FOREIGN KEY (FK_TITLE) REFERENCES TITLE(ID_TITLE) ON DELETE CASCADE

Фактически для реализации этих действий создается системный триггер, который и выполняет определенные действия. В табл. 1.2 приведено описание происходящих действий при различных опциях (обратите внимание, что опции NO ACTION|CASCADE|SET DEFAULT|SET NULL не могут использоваться совместно в одном предложении ON XXX).

Действие

При удалении внешнего ключа ничего не делать - используется по умолчанию

При удалении удалить все связанные записи из подчиненной таблицы

При изменении установить поле внешнего ключа в значение по умолчанию

При изменении установить поле внешнего ключа в NULL

При изменении ничего не делать - используется по умолчанию

При изменении записи изменить во всех связанных записях в подчиненных таблицах

При удалении установить поле внешнего ключа в значение по умолчанию

При удалении установить поле внешнего ключа в NULL

Если мы ничего не указываем или указываем NO ACTION, то необходимо позаботиться об изменении внешнего ключа (в случае изменения первичного) самостоятельно, а при удалении первичного ключа предварительно удалить записи из подчиненной таблицы.

Осторожно надо обращаться с опцией CASCADE: неосторожное ее использование может привести к удалению большого количества связанных записей.

Ограничение CHECK

Одним из наиболее полезных ограничений в базе данных является ограничение проверки. Идея его очень проста - проверять вставляемое в таблицу значение на какое-либо условие и, в зависимости от выполнения условия, вставлять или не вставлять данные.

Синтаксисегодостаточнопрост:

= CHECK ( )}

Здесь constraint - имя ограничения; - условие поиска, в котором в качестве параметра может участвовать вставляемое/изменяемое значение. Если условие поиска выполняется, то вставка/изменение этого значения разрешаются, если нет - возникает ошибка.

Самый простой пример проверки:

create table checktst( ID integer CHECK(ID>0));

Эта проверка устанавливает, больше ли нуля вставляемое/изменяемое значение поля ID, и в зависимости от результата позволяет вставить/изменить новое значение или возбудить исключение (см. главу "Расширенные возможности языка хранимых процедур InterBase" (ч. 1)).

Возможны и более сложные варианты проверок. Полный синтаксис условия поиска следующий:

= { { | ()} | BETWEEN AND | LIKE | IN ( [ , ...] | ) | IS NULL | { {= | < | >} | >= | <=} {ALL | SOME | ANY} () |EXISTS () | SINGULAR () | CONTAINING | STARTING | () | NOT | OR | AND }

Таким образом, CHECK предоставляет большой набор опций для проверки вставляемых/изменяемых значений. Необходимо помнить о следующих ограничениях в использовании СНЕК:

Данные в CHECK берутся только из текущей записи. Не следует брать данные для выражения в CHECK из других записей этой же таблицы - они могут быть изменены другими пользователями.

Поле может иметь только одно ограничение CHECK.

Если для описания поля использовался домен, который имеет доменное ограничение CHECK, то его нельзя переопределить на уровне конкретного поля в таблице.

Надо сказать, что CHECK реализованы при помощи системных триггеров, поэтому следует быть осторожным в использовании очень больших условий, которые могут сильно замедлить процессы вставки и обновления записей.

Удаление ограничений

Часто приходится удалять различные ограничения по самым разным причинам. Чтобы удалить ограничение, необходимо воспользоваться предложением ALTER TABLE следующего вида:

ALTER TABLE cablename DROP CONSTRAINT constraintname

где constraintname - имя ограничения, которое следует удалять. Если при создании ограничения было задано какое-то имя, то следует им воспользоваться, а если нет, то надо открыть какое-либо средство администрирования InterBase, поискать все связанные с ним ограничения и выяснить, какое системное имя сгенерировал InterBase для искомого ограничения.

Надо отметить, что удалять ограничения может только владелец таблицы или системный администратор SYSDBA.

В процессе проектирования базы данных принимается решение о том, какие таблицы должны входить в базу данных, какие у них будут имена (идентификаторы), какие типы данных потребуются для построения таблиц и какие пользователи получат доступ к каждой из них. Кроме того, для эффективного создания таблиц необходимо ответить на следующие вопросы:

  • Столбцы какого типа и размера будут составлять каждую из таблиц, какие требуется выбрать имена для столбцов таблиц?
  • Какие столбцы могут содержать значение NULL ?
  • Будут ли использованы ограничения целостности , значения по умолчанию и правила для столбцов?
  • Необходимо ли индексирование столбцов, какие типы индексов будут применены для конкретных столбцов?
  • Какие столбцы будут входить в первичные и внешние ключи .

Для создания таблиц в среде MS SQL Server используется команда:

<определение_таблицы> ::= CREATE TABLE [ имя_базы_данных.[владелец]. | владелец. ]имя_таблицы (<элемент_таблицы>[,...n])

<элемент_таблицы> ::= {<определение_столбца>} | <имя_столбца> AS <выражение> | <ограничение_таблицы>

Обычно владельцем таблицы (dbo) является тот, кто ее создал.

<Выражение> задает значение для вычисляемого столбца . Вычисляемые столбцы - это виртуальные столбцы, т. е. физически в таблице они не хранятся и вычисляются с использованием значений столбцов той же таблицы. В выражении для вычисляемого столбца могут присутствовать имена обычных столбцов, константы и функции, связанные одним или несколькими операторами. Подзапросы в таком выражении участвовать не могут. Вычисляемые столбцы могут быть включены в раздел SELECT при указании списка столбцов, которые должны быть возвращены в результате выполнения запроса. Вычисляемые столбцы не могут входить во внешний ключ , для них не используются значения по умолчанию. Кроме того, вычисляемые столбцы не могут участвовать в операциях INSERT и DELETE .

<определение_столбца> ::= { имя_столбца <тип_данных>} [ [ DEFAULT <выражение> ] | [ IDENTITY (начало, шаг) ]]] [<ограничение_столбца>][...n]]

В определении столбца обратим внимание на параметр IDENTITY , который указывает, что соответствующий столбец будет столбцом-счетчиком . Для таблицы может быть определен только один столбец с таким свойством. Можно дополнительно указать начальное значение и шаг приращения. Если эти значения не указываются, то по умолчанию они оба равны 1. Если с ключевым словом IDENTITY указано NOT FOR REPLICATION , то сервер не будет выполнять автоматического генерирования значений для этого столбца, а разрешит вставку в столбец произвольных значений.

В качестве ограничений используются ограничения столбца и ограничения таблицы . Различие между ними в том, что ограничение столбца применяется только к определенному полю, а ограничение таблицы - к группам из одного или более полей.

<ограничение_столбца>::= [ CONSTRAINT имя_ограничения ] { [ NULL | NOT NULL ] | [ {PRIMARY KEY | UNIQUE } [ CLUSTERED | NONCLUSTERED ] [ WITH FILLFACTOR=фактор_заполнения ] [ ON {имя_группы_файлов | DEFAULT } ] ] ] | [ [ FOREIGN KEY ] REFERENCES имя_род_таблицы [(имя_столбца_род_таблицы) ] [ ON DELETE { CASCADE | NO ACTION } ] [ ON UPDATE { CASCADE | NO ACTION } ] [ NOT FOR REPLICATION ]] | CHECK [ NOT FOR REPLICATION](<лог_выражение>) } <ограничение_таблицы>::= { [ {PRIMARY KEY | UNIQUE } [ CLUSTERED | NONCLUSTERED ] {(имя_столбца [,...n])} ] |FOREIGN KEY[(имя_столбца [,...n])] REFERENCES имя_род_таблицы [(имя_столбца_род_таблицы [,...n])] [ ON DELETE { CASCADE | NO ACTION } ] [ ON UPDATE { CASCADE | NO ACTION } ] | NOT FOR REPLICATION ] | CHECK [ NOT FOR REPLICATION ] (лог_выражение) }

Рассмотрим отдельные параметры представленных конструкций, связанные с ограничениями целостности данных . Ограничения целостности имеют приоритет над триггерами, правилами и значениями по умолчанию. К ограничениям целостности относятся ограничение первичного ключа PRIMARY KEY , ограничение внешнего ключа FOREIGN KEY , ограничение уникальности UNIQUE , ограничение значения NULL , ограничение на проверку CHECK .

Ограничение первичного ключа (PRIMARY KEY)

Таблица обычно имеет столбец или комбинацию столбцов, значения которых уникально идентифицируют каждую строку в таблице. Этот столбец (или столбцы) называется первичным ключом таблицы и нужен для обеспечения ее целостности. Если в первичный ключ входит более одного столбца, то значения в пределах одного столбца могут дублироваться, но любая комбинация значений всех столбцов первичного ключа должна быть уникальна.

При создании первичного ключа SQL Server автоматически создает уникальный индекс для столбцов, входящих в первичный ключ . Он ускоряет доступ к данным этих столбцов при использовании первичного ключа в запросах.

Таблица может иметь только одно ограничение PRIMARY KEY , причем ни один из включенных в первичный ключ столбцов не может принимать значение NULL . При попытке использовать в качестве первичного ключа столбец (или группу столбцов), для которого ограничения первичного ключа не выполняются, первичный ключ создан не будет, а система выдаст сообщение об ошибке.

Поскольку ограничение PRIMARY KEY гарантирует уникальность данных, оно часто определяется для столбцов-счетчиков . Создание ограничения целостности PRIMARY KEY возможно как при создании, так и при изменении таблицы . Одним из назначений первичного ключа является обеспечение ссылочной целостности данных нескольких таблиц. Естественно, это может быть реализовано только при определении соответствующих внешних ключей в других таблицах.

Ограничение внешнего ключа (FOREIGN KEY)

Ограничение внешнего ключа - это основной механизм для поддержания ссылочной целостности между таблицами реляционной базы данных. Столбец дочерней таблицы, определенный в качестве внешнего ключа в параметре FOREIGN KEY , применяется для ссылки на столбец родительской таблицы, являющийся в ней первичным ключом . Имя родительской таблицы и столбцы ее первичного ключа указываются в предложении REFERENCES . Данные в столбцах, определенных в качестве внешнего ключа , могут принимать только такие же значения, какие находятся в связанных с ним столбцах первичного ключа родительской таблицы. Совпадение имен столбцов для связи дочерней и родительской таблиц необязательно. Первичный ключ может быть определен для столбца с одним именем, в то время как столбец, на который наложено ограничение FOREIGN KEY , может иметь совершенно другое имя. Единственным требованием остается соответствие столбцов по типу и размеру данных.

На первичный ключ могут ссылаться не только столбцы других таблиц, но и столбцы, расположенные в той же таблице, что и собственно первичный ключ ; это позволяет создавать рекурсивные структуры.

Внешний ключ может быть связан не только с первичным ключом другой таблицы. Он может быть определен и для столбцов с ограничением UNIQUE второй таблицы или любых других столбцов, но таблицы должны находиться в одной базе данных.

Столбцы внешнего ключа могут содержать значение NULL , однако проверка на ограничение FOREIGN KEY игнорируется. Внешний ключ может быть проиндексирован, тогда сервер будет быстрее отыскивать нужные данные. Внешний ключ определяется как при создании, так и при изменении таблиц .

Ограничение ссылочной целостности задает требование, согласно которому для каждой записи в дочерней таблице должна иметься запись в родительской таблице. При этом изменение значения столбца связи в записи родительской таблицы при наличии дочерней записи блокируется, равно как и удаление родительской записи (запрет каскадного изменения и удаления), что гарантируется параметрами ON DELETE NO ACTION и ON UPDATE NO ACTION , принятыми по умолчанию. Для разрешения каскадного воздействия следует использовать параметры ON DELETE CASCADE и ON UPDATE CASCADE .

Операции над данными

Модель данных определяет множество действий, которые допустимо производить над некоторой реализацией БД для её перевода из одного состояния в другое. Это множество соотносят с языком манипулирования данными (Data Manipulation Language, DML).

Любая операция над данными включает в себя селœекцию данных (select), то есть выделœение из всœей совокупности именно тех данных, над которыми должна быть выполнена требуемая операция, и действие над выбранными данными, ĸᴏᴛᴏᴩᴏᴇ определяет характер операции. Условие селœекции - ϶ᴛᴏ некоторый критерий отбора данных, в котором бывают использованы логическая позиция элемента данных, его значение и связи между данными.

По типу производимых действий различают следующие операции:

  • идентификация данных и нахождение их позиции в БД;
  • выборка (чтение) данных из БД;
  • включение (запись) данных в БД;
  • удаление данных из БД;
  • модификация (изменение) данных БД.

Обработка данных в БД осуществляется с помощью процедур базы данных – транзакций. Транзакцией называют упорядоченное множество операций, переводящих БД из одного согласованного состояния в другое. Транзакция либо выполняется полностью, ᴛ.ᴇ. выполняются всœе входящие в неё операции, либо не выполняется совсœем, в случае если в процессе её выполнения возникает ошибка.

Ограничения целостности - ϶ᴛᴏ правила, которым должны удовлетворять значения элементов данных. Ограничения целостности делятся на явные и неявные .

Неявные ограничения определяются самой структурой данных. К примеру, тот факт, что запись типа СОТРУДНИК имеет поле Дата рождения , служит, по существу, ограничением целостности, означающим, что каждый сотрудник организации имеет дату рождения, причём только одну.

Явные ограничения включаются в структуру базы данных с помощью средств языка контроля данных (DCL, Data Control Language). В качестве явных ограничений чаще всœего выступают условия, накладываемые на значения данных. К примеру, номер паспорта является уникальным, зарплата не должна быть отрицательной, а дата приёма сотрудника на работу обязательно будет меньше, чем дата его перевода на другую работу.

Также различают статические и динамические ограничения целостно-сти. Статические ограничения присущи всœем состояниям ПО, а динамические определяют возможность перехода ПО из одного состояния в другое. Примерами статических ограничений целостности могут служить требование уникальности индивидуального номера налогоплательщика (ИНН) или задание ограниченного множества значений атрибута "Пол" ("м" и "ж"). В качестве примера динамического ограничения целостности можно привести правило, ĸᴏᴛᴏᴩᴏᴇ распространяется на поля-счётчики: значение счётчика не может уменьшаться.

За выполнением ограничений целостности следит СУБД в процессе своего функционирования. Она проверяет ограничения целостности каждый раз, когда они бывают нарушены (к примеру, при добавлении данных, при удалении данных и т.п.), и гарантирует их соблюдение. В случае если какая-либо команда нарушает ограничение целостности, она не будет выполнена и система выдаст соответствующее сообщение об ошибке. К примеру, в случае если задать в качестве ограничения правило ʼʼОстаток денежных средств на счёте не должна быть отрицательнымʼʼ, то при попытке снять со счёта денег больше, чем там есть, система выдаст сообщение об ошибке и не позволит выполнить эту операцию. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, ограничения целостности обеспечивают логическую непротиворечивость данных при переводе БД из одного состояния в другое.

Сегодня разработано много различных моделœей данных. Основные - ϶ᴛᴏ сетевая, иерархическая и реляционная модели.

Ограничения целостности - понятие и виды. Классификация и особенности категории "Ограничения целостности" 2017, 2018.

  • - Ограничения целостности

    Манипулирование данными Примерами типичных операторов манипулирования иерархически организованными данными могут быть следующие: Найти указанное дерево БД (например, отдел 310); Перейти от одного дерева к другому; Перейти от одной записи к другой внутри дерева... .


  • - Ограничения целостности в модели сущность-связь

    Здесь рассматриваются три типа ограничений: 1. Ограничения на допустимые значения в множестве значений. Атрибут отображает сущность из множества сущностей на множество значений. Допустимые значения определяются значениями в соответствующем множестве значений.... .


  • - Ограничения целостности

    Первичный ключ таблицы Всякая таблица обычно содержит один или несколько столбцов, значение или совокупность значений которых уникально идентифицируют каждую строку в таблице. Этот столбец (или столбцы) называется первичным ключом (Primary Key, PK) таблицы. Таблица может...

  • Ограничения целостности

    Ограничения целостности

    Ограничения целостности - условия, которым должны удовлетворять хранимые в базе данные.

    См. также: Базы данных

    Финансовый словарь Финам .


    Смотреть что такое "Ограничения целостности" в других словарях:

      правило ограничения целостности - 2.16 правило ограничения целостности (constraining rule): Правило, являющееся частью средства моделирования данных и управляющее выполнением требований, обеспечивающих целостность определенного набора данных. Источник: ГОСТ Р ИСО/МЭК ТО 10032… …

      ОГРАНИЧЕНИЯ НА СОЗДАНИЕ И ДЕЯТЕЛЬНОСТЬ ПОЛИТИЧЕСКОЙ ПАРТИИ - предусмотренные законом обстоятельства, при наличии которых политическая партия не может быть создана, а созданная партия не вправе осуществлять свою деятельность. В соответствии с Конституцией и Федеральным законом от 11 июля 2001 г. О… …

      ОСНОВАНИЯ ОГРАНИЧЕНИЯ НА ВЪЕЗД В РОССИЙСКУЮ ФЕДЕРАЦИЮ И ПРЕБЫВАНИЯ В НЕЙ ИНОСТРАННЫХ ГРАЖДАН - предусмотренные федеральным законом обстоятельства, при наличии которых запрещается въезд в РФ иностранным гражданам или лицам без гражданства и пребывание на ее территории. Такое ограничение Федеральный закон от 15 августа 1996 г. О порядке… … Энциклопедический словарь «Конституционное право России»

      У этого термина существуют и другие значения, см. Firebird (значения). Firebird Логотип Firebird Тип Реляционная СУБД Разработчик Сообщество Firebird Напис … Википедия

      Процесс создания схемы базы данных и определения необходимых ограничений целостности. Содержание 1 Основные задачи проектирования баз данных … Википедия

      ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными - Терминология ГОСТ Р ИСО/МЭК ТО 10032 2007: Эталонная модель управления данными: 2.36 база данных (database): Совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств… … Словарь-справочник терминов нормативно-технической документации

      - (database integrity) соответствие имеющейся в базе данных информации её внутренней логике, структуре и всем явно заданным правилам. Каждое правило, налагающее некоторое ограничение на возможное состояние базы данных, называется ограничением… … Википедия

      правило - 3.1.17 правило: Положение нормативного документа, описывающее действие, которое должно быть выполнено. [ГОСТ 1.1, статья 6.1.2] Источник … Словарь-справочник терминов нормативно-технической документации

      Данных логическая модель данных, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в реляционных базах данных. Структурный аспект (составляющая) данные в базе данных представляют собой… … Википедия

      - (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия

    Книги

    • Реляционные базы данных. Руководство , Уидом Дженнифер. Книга "Реляционные базы данных" написана хорошо известными учеными Станфордского университета Джеффри Ульманом и Дженнифер Уидом. Авторы предлагают ориентированный на пользователя подход к…